1. GENERAL

1.1 About this manual
1.2 Transport and storage
1.3 Pump specification
1.4 Customer service

2. DESCRIPTION

2.1 Product and warning signs
2.2 Applications
2.3 Design
2.4 Materials and maximum working pressures
2.5 Surface treatment
2.6 General arrangement
2.7 Performance curves
2.8 Certificates & test results

3. HEALTH & SAFETY

4. DESCRIPTION OF OPERATION

5. CONTROL SYSTEM

6. INSTALLATION

6.1 General
6.2 Foundation requirements
6.3 Installation tools and equipment
6.4 Installation procedure
6.5 Pipe connections & pump sump
6.6 Shaft gland
6.7 Motor and operation

7. COMMISSIONING
8. OPERATING INSTRUCTIONS

8.1 Starting
8.2 Stopping
8.3 Running checks

9. CARE AND MAINTENANCE

9.1 Safety measures
9.2 Preventive maintenance & service schedule
9.3 Tools and special equipment for service and maintenance
9.4 Lubrication instructions
9.5 Dismantling and assembly
9.5.1 Setting pump clearances
9.5.2 Hydraulic parts and frame - removal and fitting
9.5.3 Shaft seal – removal and refitting
9.5.4 Shaft and bearing assembly - removal and fitting
9.5.5 Shaft and bearings - disassembly and re-assembly
9.5.6 Pump drive - dismantling and reassembling
9.6 Fault tracing schedule

10. SPARE PARTS

10.1 Recommended stock of spares
10.2 Storage of spare parts
10.3 Spare parts ordering procedure
10.4 Spare parts drawing
10.5 Parts list
10.6 Special tools

11. APPENDICES

11.1 Torque table
11.2 Reference publications list
11.3 Weights table
1 GENERAL

1.1 About this manual

This manual is a part of the equipment to which it relates. It is written for the use of installers, commissioning engineers, operators and maintainers. It should be kept for the life of the equipment and, in case of re-sale, passed on to any subsequent purchaser.

Information contained in this manual is specific to the equipment and is correct at the date of publication. As improvements are continually being made, Metso Minerals reserve the right to make alterations to the equipment design and specification without giving prior notice. Any amendments issued by Metso Minerals should be promptly inserted into this manual.

© 2004 — Metso Minerals (Sala) AB. The contents of this manual must not be reproduced without the prior written permission of Metso Minerals (Sala) AB.

1.2 Transport and storage

1.2.1 Delivery

A pump is either dispatched as an individual unit (bare shaft pump) or mounted complete with drive unit on a bedplate (pump-set). In either case, any exposed machined parts are coated with a suitable rust inhibitor.

Each pump is supplied complete with inlet and outlet flanges and gaskets, drive key, and with the bearing cylinder charged with grease.

The packing or boxing will always be more than adequate for the method of shipment and subsequent storage.

On receipt of the pump, check that the items listed on the consignment list have been supplied and have not been damaged in transit. Ensure that the inlet and outlet apertures are clear and that the impeller runs freely when the shaft is turned by hand.

If the pump has been disassembled for shipment, a consignment list will contain complete information on the identification of parts. Where parts are boxed, each box is numbered and the corresponding number is noted on the consignment list.

If damage has occurred or any items are missing, immediately file a report with the carrier making the delivery. Also, submit a written report to Metso Minerals detailing the damage and/or missing items, as soon as possible.
1.2.2 Handling and lifting

Whether at the depot or on site, **ALWAYS** follow normal handling and lifting procedures and instructions contained or referred to in this manual.

Handling of centrifugal pumps requires great care, especially larger or more cumbersome items of machinery. All slinging, lifting or conveying **MUST** be carried out by appropriately skilled personnel.

Always lift slowly and smoothly, maintaining the pump in a level attitude.

For your convenience and safety, approximate weight of the pump, or pump complete with drive unit and baseplate, is in the Appendices, Section 11.

WARNINGS

MAKE SURE THAT ALL SLINGS, SHACKLES, ETC. USED ARE OF ADEQUATE LOAD CARRYING CAPACITY FOR THE UNIT TO BE LIFTED. CHECK THAT ALL LIFTING EQUIPMENT CERTIFICATES ARE CURRENT.
1.2.3 General storage instructions

- Re-apply rust inhibitor to all moving parts, at least, every two months.

Protect pump against dust and weather by storage indoors or under weatherproof cover

Protect pump against impact

Turn shaft at least every month
1.2.4 Long-term field storage
Minimum requirement for storage and maintenance of centrifugal type pumps on site before their installation and start-up.

1. Medium term storage
Indoor storage of equipment is recommended in order to prevent the harmful effects of exposed conditions, particularly in dust laden atmospheres.

The standard anti-rust protection provided prior to dispatch remains adequate for periods not exceeding two months.

Whenever indoor storage is not possible, it is necessary to follow the guidelines given below:

 a) Locate the pump set with its bedplate on a concrete floor and supported on wooden joists of approximately 100 mm x 100 mm in section.
 b) Cover the pump set, whether located indoors or outdoors, with a strong, waterproof cover extending down to the baseplate. The cover must be securely fixed to withstand ambient weather conditions.
 c) Prior to fitment of the cover, ensure that:
 i. all openings, including inlet and outlet apertures, are properly sealed, and;
 ii. the bearing cylinder and drive are properly protected against dust.

2. Prolonged storage - up to 2 years
The following steps are essential in all cases where prolonged storage is foreseen:

 a) The pumps are to be adequately warehoused in a closed dry and, if possible, a temperature controlled building.
 b) Every six months, the stuffing box/shaft seal sleeve area should be inspected, cleaned and re-coated with a suitable anti-rust compound, if required.
 c) If disassembly of the pump is not practical then proceed as follows:-
 i. Desiccate the pump case with hot air at 35°C to 65°C.
 ii. Seal all pump openings and attach sachets of hygroscopic salts (silica gel).
 iii. During the desiccation with hot air, ensure that no other parts become overheated as this may be detrimental.
 d) The pump rotor should be turned over several times by hand at intervals not exceeding one month.
 e) The bearing grease should be checked at least once every twelve months.
 f) The bearing cylinder must be disassembled, cleaned and regreased prior to reassembly at least once every 24 months.
During prolonged storage, it may prove difficult to rotate the pump rotor manually for normal maintenance. In such cases proceed as follows:-

a) Loosen the bearing end covers which limit the axial displacement of the bearings.

b) Move the pump rotor along its axis, thus freeing the assembly and allowing manual rotation.

3. Storage in excess of two years

For prolonged storage in excess of two years in adverse ambient conditions, special protection may be necessary. Any moisture absorbing devices used must be absolutely effective and regularly maintained. Whenever possible for storage periods in excess of two years, it is recommended that all pump components are disassembled, washed, dried, protected and reassembled afterwards. This work may be done by Metso Minerals and charged to the purchaser under normal rates in force at the time the service is carried out.

1.2.5 Storage of spares

In general, unless otherwise instructed, keep all spares parts in a cool, dry environment and protect rubberised/synthetic components from sunlight and high voltage electrical equipment.

Rubber is affected by ageing and its rate of deterioration is dependent on the type of rubber and the storage conditions. Rubber perishes most rapidly when exposed to heat, ultra violet light and oxidants. The more commonly overlooked sources of which are sunlight and electrical machinery. Rubber can become permanently deformed if compressed out of shape during storage. Mineral oils, solvents, dust, contact with metals and moisture can also damage rubbers depending on type.

Certain types of rubber such as chloroprene rubber (CR) harden at temperatures below +5°C. In conditions of extreme cold these types of rubber harden to such an extent that they could develop cracks and be damaged by handling. Chloroprene rubber does not regain its normal hardness when the ambient temperature rises but has to be reconditioned.
To ensure rubber products maintain their original properties, storage conditions must be controlled. Where practicable, ensure rubber products are:

1. kept sealed in their original packing which should be opaque;
2. kept away from direct sunlight;
3. kept away from electrical machinery - e.g. motors and generators;
4. kept in a cool, dry environment between 15°C to 25°C;
5. stored away from exhaust fumes;
6. stored separately from chemicals and fuels;
7. stored loosely packed;
8. rotated on a first in - first out basis.

Storage life for different types of rubber stored under recommended conditions are as indicated in Table 1.2.5-1.

NOTE: AT 15°C THE STORAGE LIFE WILL BE ABOUT DOUBLE AND AT 35°C ABOUT HALF OF THAT STATED IN THE TABLE.

<table>
<thead>
<tr>
<th>Type of rubber</th>
<th>Product ref.</th>
<th>Storage life @ 25°C (years) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>NR</td>
<td>5</td>
</tr>
<tr>
<td>Nitrile</td>
<td>NBR</td>
<td>7</td>
</tr>
<tr>
<td>Chloroprene</td>
<td>CR</td>
<td>7</td>
</tr>
<tr>
<td>Butyl</td>
<td>IIR</td>
<td>7</td>
</tr>
<tr>
<td>Ethylene-propylene</td>
<td>EPDM</td>
<td>10</td>
</tr>
<tr>
<td>Chlorosulphonated polyethylene (Hypalon)</td>
<td>CSM</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1.2.5-1 Types of rubber and their expected storage life.
Pump MM200 EHC-D C5

Pump specification

<table>
<thead>
<tr>
<th>Headline</th>
<th>Description</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order part no:</td>
<td>Machine sign showing A5684 and A5685</td>
<td></td>
</tr>
<tr>
<td>Complete pump:</td>
<td>25411801000</td>
<td></td>
</tr>
<tr>
<td>Pump type:</td>
<td>PDW35141201</td>
<td></td>
</tr>
<tr>
<td>Product code:</td>
<td>MM200 EHC-D C5</td>
<td>2</td>
</tr>
<tr>
<td>Pump no:</td>
<td>25411801001 - 002</td>
<td></td>
</tr>
<tr>
<td>Frame size:</td>
<td>FR400</td>
<td></td>
</tr>
<tr>
<td>Wear parts, quality:</td>
<td>Chrome Iron</td>
<td></td>
</tr>
<tr>
<td>Special design:</td>
<td>DISCHARGE POS 2 (HORIZONTAL UNDERHAND)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRIVE SHAFT TURNED DOWN TO 60 MM (DRG CH4270)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BRG CART PT NUMBER PDWB05102. EXPELLER RING H/C WITH GREEZE NIPPLE. 150 TO 200 MM FLANGE ADAPTOR(500311-1)</td>
<td></td>
</tr>
<tr>
<td>Painting:</td>
<td>MP15</td>
<td></td>
</tr>
<tr>
<td>Capacity m³/h:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total head m:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump speed rpm:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific gravity kg/l:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input power kW:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special req.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor supplied by:</td>
<td>Customer</td>
<td></td>
</tr>
<tr>
<td>Drive supplied by:</td>
<td>Customer</td>
<td></td>
</tr>
<tr>
<td>Motor sheave:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor bushing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump sheave:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump bushing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-belts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instruction:</td>
<td>1 in EN with the pump, PDF to J.Perry</td>
<td></td>
</tr>
</tbody>
</table>
1.4 Customer service

For any inquiry regarding the servicing and repair of Metso Minerals Slurry pumps please contact the local Metso Minerals Branch. For information on the Metso Minerals Branch closest to you, contact one of the Metso Minerals Global Sites listed below:

Metso Minerals (Sala) AB
Norrängsgatan 2
Box 302
S-73325 SALA
Sweden
Tel: (+46) 224 374 00
Fax: (+46) 224 169 69

Metso Minerals Industries, Inc.
P O Box 340
COLORADO SPRINGS CO 80901
621, South Sierra Madre (80903)
USA
Tel: (+1) 719 471 3443
Fax: (+1) 719 471 4469

Metso Minerals (UK) Limited
Parkfield Road
Rugby
CV21 1QJ
United Kingdom
Tel: (+44) 1788 532217
Fax: (+44) 1788 575364

Please provide the following information:

1. model and size of equipment;
2. serial number;
3. approximate date of purchase;
4. details of enquiry, apparent fault etc..
2 DESCRIPTION

2.1 Product and warning signs

2.1.1 Product signs
All product signs attached to the pump are shown below.

Figure 2.1.1-1 Weight plate

The weight sign is mounted next to the machine sign. When the pump is supplied without motor and drive, only the weight of the pump is stamped on the sign. In which case the total weight is stamped on the sign by the mechanic who fits the motor and drive on the pump.

Pump delivered without motor

Pump delivered with motor

Figure 2.1.1-2 Machine plate

A machine sign containing information as above is affixed to the pump. A pump delivered with motor has a machine sign with CE-mark. When the pump is delivered without motor the CE-mark has to be affixed when the motor is assembled. The CE-mark is included in the pump delivery.
2.1.2 Warning and caution signs

This sign, attached to the drive cover, indicates the direction of rotation of the pump when viewed from the drive end.

THERE IS RISK OF SERIOUS DAMAGE TO THE PUMP IF IT IS ALLOWED TO ROTATE IN THE WRONG DIRECTION.

This sign is a hazard warning and is usually accompanied by text indicating the nature of the hazard.

THERE IS RISK OF SERIOUS INJURY IF THESE WARNING INSTRUCTIONS ARE NOT OBSERVED.

The guard should always be fitted when the pump is in operation.

If the guard is to be removed, check that the motor is disconnected from the mains or that the main switch is turned off and locked so that the motor cannot be started inadvertently.

The guard must always be refitted before the pump is started.

The sign is mounted on the V-belt guard.

This sign is attached to a direct-drive coupling guard.

Direction of rotation of the pump is indicated by this sign attached to the front of the case.

This sign, attached to the frame, indicates that the pump requires periodic greasing.
2.2 Applications

The Metso Minerals Slurry Pump has been designed for a wide variety of abrasive pumping duties. While the pumps may be used in many different industries, they are all designed for constant use in the most arduous conditions. These high-efficiency pumps are of a simple design, providing ease of maintenance and facilitating replacement of wearing parts.

2.3 Design

2.3.1 General

Slurry Pumps are made up of four basic modules, the frame (A), the bearing cylinder (B), the shaft seal (C) and the wet-end (D) assemblies – see Figure 2.3.1-1.

A comprehensive range of modules are available, to configure pumps to suit a wide range of applications.

Pumps are supplied bareshaft or as fixed-base pumpsets with various choices of motor mounting position. Manual or hydraulic slide-bases are optional.

Maximum efficiency is maintained by setting impeller running clearance(s). The adjustment is easily carried out during maintenance and shut-down periods.

Standard bearing cylinders are grease lubricated, but oil lubricated bearings are an option.

Pump designation is made up of letters which identify the range and numbers which indicate the inlet diameter in millimetres – e.g. HM150.

![Figure 2.3.1-1 Typical outline design of Metso Minerals Slurry Pumps showing the basic pump modules: Frame (A), Bearing cylinder(B), Shaft seal(C), Wet-end (D)](image-url)
2.3.2 Noise level
In certain installations and outside the optimum operating conditions, the noise level of 70 dB(A) may be exceeded. The motor generates most of the noise and, in general, the noise level for properly designed installations will be about 2dB(A) above that of the motor.

2.3.3 Vibration
The pumps are in ClassIV as described in ISO10816-1. When the pump is new, the vibration level at any bearing should not exceed 7.1 mm/s. Vibration levels above 11 mm/s should always receive attention.

CAUTION
SHOULD VIBRATION LEVELS EXCEED 18 mm/s, STOP THE PUMP IMMEDIATELY.

Common reasons for high vibrations are:
⇒ inadequately tightened fasteners;
⇒ slack V-belt;
⇒ misalignment of the drive;
⇒ the pump impeller is blocked by debris.
2.4 Materials and maximum working pressures

Metso Minerals Slurry Pumps are constructed from materials selected to give excellent wear characteristics over the full range of pumping duties. This section lists the materials of construction and working pressures for STANDARD duty applications. Other materials are also used for specialist applications or as specified by the customer – see section 1.3.

MATERIALS OF CONSTRUCTION

<table>
<thead>
<tr>
<th>Item</th>
<th>Material Type</th>
<th>Material Code</th>
<th>Material Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case</td>
<td>White Cast Iron</td>
<td>JN3049</td>
<td>EN 12513</td>
</tr>
<tr>
<td>Impeller</td>
<td>White Cast Iron</td>
<td>JN3049</td>
<td>EN 12513</td>
</tr>
<tr>
<td>Back Liner</td>
<td>White Cast Iron</td>
<td>JN3049</td>
<td>EN 12513</td>
</tr>
<tr>
<td>Bearing Frame</td>
<td>Cast Iron</td>
<td>JS1030</td>
<td>EN 1563</td>
</tr>
<tr>
<td>Expeller</td>
<td>White Cast Iron</td>
<td>JN3049</td>
<td>EN 12513</td>
</tr>
<tr>
<td>Expeller Ring</td>
<td>White Cast Iron</td>
<td>JN3049</td>
<td>EN 12513</td>
</tr>
<tr>
<td>Expeller Ring (option)</td>
<td>Cast Iron</td>
<td>JS1030 PU Lined</td>
<td>EN 1563</td>
</tr>
<tr>
<td>Stuffing Box</td>
<td>Cast Iron</td>
<td>JS1030</td>
<td>EN 1563</td>
</tr>
<tr>
<td>Shaft Sleeve</td>
<td>White Cast Iron</td>
<td>JN3049</td>
<td>EN 12513</td>
</tr>
<tr>
<td>Shaft Sleeve (option)</td>
<td>Stainless Steel</td>
<td>1.4401</td>
<td>EN 10088</td>
</tr>
<tr>
<td>Shaft Sleeve (option)</td>
<td>Stainless Steel</td>
<td>1.4021</td>
<td>EN 10088</td>
</tr>
<tr>
<td>Shaft Sleeve (option)</td>
<td>Stainless Steel</td>
<td>1.4462</td>
<td>EN 10088</td>
</tr>
<tr>
<td>Shaft</td>
<td>Steel</td>
<td>1.1191</td>
<td>EN 10083</td>
</tr>
<tr>
<td>Seals</td>
<td>Nitrile Rubber</td>
<td>NBR</td>
<td>-</td>
</tr>
</tbody>
</table>

PUMP WORKING PRESSURES

<table>
<thead>
<tr>
<th>SIZE</th>
<th>BAR</th>
<th>kPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM100 to MM400</td>
<td>15.0</td>
<td>1500</td>
</tr>
</tbody>
</table>
2.5 Surface treatment

2.5.1 Standard finish
The external surfaces of the pump are protected by the anti-corrosive system specified in Table 2.5.1-1, except exposed machined surfaces which are coated with an air drying rust inhibitor. Drive motors are supplied in the original manufacturer’s standard finish. Stainless steel, plastic or elastomeric parts are not painted.

Table 2.5.1-1 Paint specification

<table>
<thead>
<tr>
<th>COATING</th>
<th>TYPE</th>
<th>COLOUR</th>
<th>Finish 70</th>
<th>DFT (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish (all except guards)</td>
<td>Two-pack gloss oxiranester thick coat paint</td>
<td>Blue (RAL 5009)</td>
<td>Gloss</td>
<td>120</td>
</tr>
<tr>
<td>Finish (guards only)</td>
<td>Epoxy powder</td>
<td>Yellow (RAL 1032)</td>
<td>Gloss</td>
<td>100</td>
</tr>
</tbody>
</table>

2.5.2 Paint repairs
To repair damage to a painted surface;

1. remove any trace of oil and dirt using solvent wash;
2. remove all loose paint by chipping or scraping back until only sound paintwork remains and clean the exposed surface by wire brushing or other mechanical means to grade St2 of Swedish Standard SS 055900 (ISO 8501-1:1988);
3. sand down and feather a 25mm band of the sound bordering paintwork;
4. vacuum the surface to remove all dust and debris;
5. apply the paint system specified in Table 2.5.1-1.
Suitable counter flange
DN200 PN16

Suitable counter flange
DN200 PN16

Weight bare shaft pump 650 kg

Measurements subject to change without notice
Lifting point may vary depending on motor size.

Dim A, B, D, Mv acc to bolt manufacturers' instruction.

Anchor bolts, proposal design.

C - C

Measurements subject to change without notice.
Pump MM200 C5 Performance Curve

Description

<table>
<thead>
<tr>
<th>Full impeller dia</th>
<th>Vane diameter</th>
<th>Vane config</th>
<th>Impeller type</th>
<th>No. of vanes</th>
<th>Max sphere</th>
<th>Impeller material</th>
<th>Liner material</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 mm</td>
<td>400 mm</td>
<td>Full</td>
<td>Closed</td>
<td>5</td>
<td>35 mm</td>
<td>Metal</td>
<td>Metal</td>
</tr>
</tbody>
</table>

Graphs:

- **H (m)** vs. **P (kW)**
- **Q (m³/h)** vs. **H (m)**
- **Q (m³/h)** vs. **P (kW)**

Based on clear water tests; correct for other conditions.
2.8 Certificates and test results

DECLARATION BY THE MANUFACTURER

PROHIBITION TO PUT INTO SERVICE

We Metso Minerals (Sala) AB, Norrängsgatan 2, 733 25 SALA, SWEDEN declare that the slurry pump

Manufacturer Metso Minerals (Sala) AB
Pump type MM200 EHC-D
Pump number 25411801001, 25411801002
Year of manufacturing 2005

- is intended to be incorporated into machinery or to be assembled with other machinery to constitute machinery covered by Directive 98/37/EG, as amended;
- does therefore not in every respect comply with the provisions of this directive;

and that following harmonized standards have been applied

- EN 292-1 Safety of machinery – Basic terminology, methodology
- EN 292-2 Safety of machinery – Technical principles and specifications
- EN 809 Pumps and pump units for liquids - common safety requirements

and furthermore declare that it is not permitted to put the slurry pump into service until the machinery into which it is to be incorporated has been found and declared to be in conformity with the provisions of Directive 98/37/EG and with relevant national legislation. This refers to the equipment as a whole, including the machinery referred to in this declaration.

A pump delivered with motor has a machine sign with ce-mark. When the pump is delivered without motor the ce-mark has to be affixed when the motor is assembled.
The ce-mark is included in the pump delivery.

2004-06-07 in Sala, Sweden

Name: Jan Andersson
Position: General manager, Slurry pump division
3 HEALTH AND SAFETY

3.1 General

HEALTH AND SAFETY STATEMENT

DO TAKE TIME TO ENSURE THAT YOUR SAFETY AND THAT OF OTHERS IS NOT PUT AT RISK. FAILURE TO OBSERVE CERTAIN ELEMENTARY SAFETY PRECAUTIONS MAY RESULT IN PERSONAL INJURY OR DAMAGE TO THIS PUMP EQUIPMENT. THE SAFETY INFORMATION IN THIS AND OTHER SECTIONS IS INTENDED TO ENCOURAGE A SAFETY CONSCIOUS APPROACH TO OPERATING AND CARRYING OUT MAINTENANCE.

3.1.1 Warnings and cautions

For the purpose of definition in this manual, a WARNING gives information which if ignored could lead to serious injury of personnel. A CAUTION gives information which if ignored could lead to serious damage to the pump or associated equipment.

WARNING

PARAGRAPHS WHICH PURELY PROVIDE A WARNING NOTICE ARE BOXED AND HIGHLIGHTED IN THIS STYLE.

CAUTION

PARAGRAPHS WHICH PURELY PROVIDE A CAUTIONARY NOTICE ARE BOXED AND HIGHLIGHTED IN THIS STYLE.

3.1.2 Training

It is strongly recommended that all customers' production and maintenance personnel and site visitors are made fully aware of potential dangers of this equipment. If any doubt exists, please contact Metso Minerals for advice.

FOR YOUR OWN PERSONAL SAFETY, READ AND TAKE NOTE OF THE FOLLOWING:

HAZARDOUS AREAS

- These are in the areas of the impeller, shaft seal, impeller release mechanism, drive motor shaft, direct drive coupling or drive belts. Under normal operating conditions these areas MUST be enclosed by safety covers or guards. Pump intake and discharge ports, when open, are also hazardous areas. NEVER insert your hand into either of these ports without first ensuring that the pump drive has been isolated.
LIFTING THE PUMP

- Make sure that **ALL** slings, shackles, etc. are of adequate load carrying capacity. Metso Minerals Slurry pumps may be provided with lifting eyes designed for lifting individual components. These should NOT be used to lift the pump unit or the pump set. Individual pumps should **ALWAYS** be lifted by using slings passed through the bearing frame. See sub-section 1.2.2 for recommended lifting techniques.

OPERATING THE PUMP

- Ensure that **ALL** safety covers and guards are in position and securely fitted.

 DO NOT wear loose clothing when working in close proximity to rotating parts.

 NEVER allow water or slurry to rise above the top of the pump base.

MAINTAINING THE PUMP

- **SWITCH OFF** and **ISOLATE** the electrical supply to the pump motor and allow rotating parts to come to rest before carrying out any maintenance or adjustments.

3.2 Warning and caution signs

See sub-section 2.1.
4 DESCRIPTION OF OPERATION

4.1 General

Centrifugal pumps work best with minimum wear and other mechanical stress if the operating point is close to the pump's best efficiency point (BEP). To choose a pump that works close to its best efficiency line (BEL), it is important to understand how the pump interacts with the piping system in which it is installed.

In simple terms, a pump and its piping system act as two communicating vessels. The piping system has a resistance curve that starts at the static delivery head, at zero flow. As the flow increases, the resistance increases with pipe friction. A radial centrifugal pump has a descending discharge/flow curve for each rpm. The pump's operating point (DP) at a given pump speed is the point of intersection between the piping system's resistance curve and the pump's discharge/flow curve. See diagram below.

It is therefore important to calculate the piping system's resistance curve correctly and to take into account the manner in which the admixture of solid particles, for example, affects the curves of the piping system and pump. We recommend using Pumpdim™ for Windows™ for our pump applications.

To obtain the best wear properties the pump can be provided with different materials in the parts exposed to the greatest wear.

4.2 Best efficiency point

Pressure conditions in the pump casing are shown in Figure 4.2-1. At the BEP there is even pressure round the impeller, resulting in small radial forces which in their turn exert little load on bearings and cause little shaft deflection. When the pump operates at low capacity and not at BEP, differential pressure builds up over the casing volute. This gives rise to a radial force F on the impeller which is a function of the differential pressure (Pa) and the impeller's projected area (mm²).
When the pump operates at best efficiency point, uniform pressure is obtained in the casing which in its turn eliminates radial forces on the impeller.

When the pump's flow capacity is not utilized, uniform pressure in the pump casing will not be obtained and this results in a radial force F on the impeller.

The magnitude of the radial force F is greatest when the pump runs against closed valve = 0 flow. The force subsequently diminishes up to BEP where it is close to zero. At flows above BEP the force changes direction.

Figure 4.2-1 Best efficiency point

When the pump is not operating at BEP the bearings will have a shorter service life on account of shaft deflection. In addition, the differential pressure over the impeller gives rise to the transport of slurry between the impeller and the inlet liner, causing rapid wear of the liner.

4.3 Hydraulic effects of operation at, and outside, BEP

1. The slurry's inflow angle coincides with the impeller's vane angle and no erosive vortices occur.
2. The slurry's flow angle harmonizes with the angle of the pump casing nose and no erosive vortices occur.

Figure 4.3-1 Operating at best efficiency point
The way in which the hydraulic work is affected when the pump does not operate at BEP is shown in Figure 4.3-2 and Figure 4.3-3. This is of decisive importance in slurry pumping.

Figure 4.3-2 Operating outside BEP - At low load

3. Abrasion on the impeller vane's discharge side.
4. Vortices occur on the vane's vacuum side.
5. Vortices.
6. Abrasion caused by particles striking and bouncing against the surface.

Figure 4.3-3 Operating outside BEP - On overloading

7. Vortices are formed on the discharge side of the impeller vane.
8. Abrasion occurs on the vacuum side of the vane tip.
10. Abrasion on the pump casing nose.
Hydraulic efficiency is a function of hydraulic turbulence - the more turbulence, the less efficiency. In slurry pumping, a high level of efficiency is therefore important.

Little hydraulic turbulence is formed at BEP and the abrasion is chiefly of a sliding nature, since the differential pressure is low when the slurry passes through the impeller and pump casing. The rate of abrasion is low and the wear is spread evenly over the surfaces. The rasping wear or high-pressure wear that occurs between the impeller and suction side liner is lower, since the evenly distributed hydraulic pressure reduces recirculation.

When the full capacity of the pump is not used and its efficiency is less than at BEP, hydraulic turbulence occurs and the solid particles in the slurry strike and rasp the impeller and pump casing. This causes local wear damage and the service life of these components is severely shortened. At the inlet to the impeller the slurry's flow angle is not the same as the pump vane angle, which gives rise to turbulence and results in recirculation of slurry in the channel. At the pump casing nose the flow from the impeller does not harmonize with the shape of the casing, causing turbulence to occur immediately after the pump casing nose.

In the worst case, oversized pumps which do not operate at BEP result in bearing breakdown, shaft fracture and unevenly worn inlet and pump casing liners with deep wear marks at the casing nose.

4.4 Choice of pump size

For preference, choose the pump size which operates as close as possible to the pump's best efficiency point (BEP).
5 CONTROL SYSTEM

(NOT APPLICABLE)
6 Installation

6.1 General
Refer to sub-section 1.2 for handling instructions.

6.2 Foundation requirements
Ideally, the pump and its drive should be mounted on a common bedplate which is fixed to a level foundation of adequate strength. All bedplates supplied by Metso Minerals incorporate holding-down bolt holes. It is recommended that the pump is installed in such a way that maintenance and adjustments can be carried out easily. It is essential that the pump is not subjected to flooding.

A foundation must provide a rigid and durable support, while absorbing shock loads and vibrations to and from the machine. Many criteria influence its design, its construction materials and its preparation: vibration and loading characteristics, operating environment and effect of nearby machinery are some. Each installation is, therefore, a special case needing careful examination of its particular requirements. The following are general guidelines for preparing a foundation for Metso Slurry Pumps –refer to Figure 6.2-1 for details.

![Figure 6.2-1 Foundation and fixings, general arrangement](image)

Figure 6.2-1 Foundation and fixings, general arrangement

\[Ed > (12 \times \varnothing D) \]
\[C \text{ min} > 1.25 \times B \text{ min} \]
1. The foundation must be poured on a well prepared solid ground.

2. A mixture of good quality cement and coarse aggregate is suitable in most cases, but, where applicable, the chemistry of the soil and the operating environment may impose additional requirements. Reinforcement bars may also be necessary depending on application.

3. The total foundation mass and its related support structures should be at least five times the total weight of the rotating assembly. The weight of the rotating assembly – excluding the rotating parts of the motor – is roughly ¼ of the weight of the bare shaft pump. See section 11.3 for the bareshaft assembly weight.

4. Foundation depth (C_{min}) should be at least 125% of the anchor hole depth (B_{min}).

5. For maximum strength, anchor fixings should be positioned more than 12 times the anchor hole diameter (ΩD) from the edge of the concrete slab (E_d).

6. The concrete slab should be level to within 12.5 mm in 3000 mm.

7. If the installation is in close vicinity of other moving machinery, then necessary precautions should be taken to prevent cross-talk.

6.3 Installation tools and equipment

Apart from suitable lifting equipment, a standard fitter's tool kit together with suitably-sized hexagon key wrenches and torque wrenches are normally sufficient to install the pump. See Toolkit, sub-section 10.6.

Metso Minerals can supply all recommended fixtures and tools at additional cost.
6.4 Installation procedure

6.4.1 Pump

When the foundation has fully cured, the anchor bolts may be installed –refer to Figure 6.2-1 and Figure 6.4-1.

a) Spacing between anchor fixings should normally be more than 10 times their diameter, unless otherwise instructed. Refer to manufacturer’s instructions for specific details.

b) Lift the pumpset into position over the foundation and align it as required in the plant layout drawing.

NOTE: IF LIFTING THE PUMPSET INTO POSITION IS NOT CONVENIENT, PREPARE A FOOTPRINT PATTERN OF THE BEDPLATE (A3) USING HARDBOARD.

1. With the pumpset (or the pattern) in position, drill the required number of holes in the foundation.

NOTE: ENSURE THAT THE HOLE DEPTH (B_MIN) AND DIAMETER (ØD) CONFORM TO THE BOLT MANUFACTURER’S SPECIFICATION.

2. Blow out the dust and debris from the holes.

3. With the pumpset in position, level the bedplate using shims (A4), if necessary, and tap in the anchor fixings to a depth (A_min), as specified by the bolt manufacturer.

4. Assemble the fixing nuts to the anchor fixings and tighten to the torque setting (Mv), as specified by the bolt manufacturer.
6.4.2 Belt driven pumps

1. Make allowances for possible pump shaft forward adjustment when positioning the drive pulley on the shaft.

2. Align the pump and motor pulleys correctly. Misalignment between pulleys could cause excessive belt wear, heat generation and noise.

6.4.3 Direct driven pumps

Where practicable, fit a spacer coupling so that the pump "back pull-out" method can be used, thus avoiding the need to remove the drive or other equipment. The minimum distance between shaft ends needed to facilitate the "back pull-out" method is given in, ‘General Arrangement’, sub-section 2.6.

6.4.4 General installation procedure

1. Check that the inlet and outlet openings and the case are clear of any debris and that the respective joint seals are in position before connecting the pipework.

WARNING WHERE THE SYSTEM IN WHICH THE PUMP IS INSTALLED IS DESIGNED IN SUCH A WAY THAT THE PUMP INLET AND OUTLET LINES CAN BE SHUT OFF OR COULD BECOME BLOCKED SIMULTANEOUSLY, SET THE SAFETY VALVE TO THE PRESSURE SPECIFIED IN ‘MATERIALS AND MAXIMUM WORKING PRESSURES’, SECTION 2.4. THIS IS DESIGNED TO ELIMINATE THE RISK OF THE PUMP BURSTING, WHICH COULD HAPPEN IF THE PUMP IS RUNNING WITH BOTH THE INLET AND OUTLET LINES SHUT OFF.

2. DO NOT force the pipes into alignment with the inlet and outlet joint flanges. Avoid unnecessary loads on the pump by ensuring that all pipework is adequately supported and is not resting on the pump.

NOTE: THE JOINT FLANGES ARE SPLIT FOR EASE OF ASSEMBLY. IF FOUND TO BE LOOSE, TIGHTEN THE RESPECTIVE SCREWS TO THE TORQUE LOADING NOTED IN THE TORQUE TABLE, SUB-SECTION 11.1.

3. Disconnect the drive belts or coupling before connecting the electrical supply to the drive motor.

4. Run the motor and check that it turns in the direction indicated by the arrow sign – see section 2.1.2.

CAUTION THE PUMP MUST NOT BE RUN IN THE OPPOSITE DIRECTION AS THIS COULD RESULT IN THE IMPELLER UNWINDING FROM THE SHAFT, CAUSING EXTENSIVE DAMAGE TO THE PUMP.

5. Reconnect the drive belts or couplings as necessary.

6. Re-check drive component alignments, and re-set if necessary –see section 9.5.6. NOTE: ALWAYS CHECK DRIVE ALIGNMENT AFTER INSTALLATION.
7. Connect the gland water supply pipe, in case of pumps with a water flush gland seal. Water must be clean, and at the correct pressure and flow rate. See Table 6.4.4-1 and section 9.5.3.

<table>
<thead>
<tr>
<th>Recommended water quality for flushed gland</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH : 6.5 to 8</td>
</tr>
<tr>
<td>Dissolved solids : < 1000 PPM</td>
</tr>
<tr>
<td>Suspended solids : < 100 PPM</td>
</tr>
<tr>
<td>Max particle size : - 60µ</td>
</tr>
<tr>
<td>Max individual dissolved ions :</td>
</tr>
<tr>
<td>Hardness (Ca+, Mg+) : < 10º dH</td>
</tr>
<tr>
<td>Calcium Carbonate (CaCO3) : < 20 PPM</td>
</tr>
<tr>
<td>Sulphate (SO4-) : < 50 PPM</td>
</tr>
</tbody>
</table>

Table 6.4.4-1 Recommended water quality for flush water

8. Ensure that all safety covers are fixed securely in position.

NOTE: IF THE PUMP HAS BEEN BROUGHT OUT OF STORAGE, LUBRICANT RENEWAL MAY BE ADVISABLE. SEE LONG TERM STORAGE RECOMMENDATIONS IN SECTION 1.2.4.

6.4.5 Cold climates
Where there is the likelihood of pump being exposed to below freezing conditions the following precautions are strongly recommended.

1. If practical, on site all pumps should be installed with their outlets in position-3 as shown in ‘General Arrangement’, sub-section 2.6.
2. Immediately pump is stopped drain discharge pipework.
3. Where practicable, fix adequate drain plugs on discharge pipework local to pump.
4. Disconnect flange fixings to pump outlet and inlet. Siphon out as much of the slurry as possible.

A small amount of slurry can remain in bottom of pump case provided it does not come in contact with the impeller.

These precautions will make it possible to drain the pump and its pipework of all slurry during shut-downs.

6.4.6 Pump outlet positions
To reposition the pump case outlet to suit existing pipework, follow relevant instructions in Dismantling and Assembly, section 9.5. ‘General Arrangement’, sub-section 2.6 shows the possible outlet positions.
6.5 Pipe connections and pump sump

CAUTION

DO NOT install the pipework in such a way that it puts any excessive load onto the pump case. Table 6.5-1 indicates the standard allowable flange forces. Please consult Metso Minerals should the flange load requirement be greater.

Table 6.5-1 Allowable flange forces

<table>
<thead>
<tr>
<th>FLANGE SIZE</th>
<th>(F_x) AND (F_y) (N)</th>
<th>(F_z) (N)</th>
<th>(M_x) AND (M_y) (Nm)</th>
<th>(M_z) (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>350</td>
<td>700</td>
<td>165</td>
<td>325</td>
</tr>
<tr>
<td>50</td>
<td>510</td>
<td>1000</td>
<td>240</td>
<td>475</td>
</tr>
<tr>
<td>80</td>
<td>800</td>
<td>1600</td>
<td>370</td>
<td>750</td>
</tr>
<tr>
<td>100</td>
<td>1100</td>
<td>2200</td>
<td>510</td>
<td>1000</td>
</tr>
<tr>
<td>150</td>
<td>2000</td>
<td>4000</td>
<td>895</td>
<td>1790</td>
</tr>
<tr>
<td>200</td>
<td>2900</td>
<td>5800</td>
<td>1325</td>
<td>2650</td>
</tr>
<tr>
<td>250</td>
<td>4350</td>
<td>8700</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>300</td>
<td>5800</td>
<td>11600</td>
<td>2650</td>
<td>5300</td>
</tr>
<tr>
<td>350</td>
<td>7600</td>
<td>15200</td>
<td>3500</td>
<td>6900</td>
</tr>
<tr>
<td>400</td>
<td>9700</td>
<td>19400</td>
<td>4500</td>
<td>8900</td>
</tr>
</tbody>
</table>
The pump is **NOT** self-priming, which means that the pump case must be full of liquid before the pump is started. Additionally, take note of the following (see also Figure 6.5-1):

- Sump bottom should have an angle of 45°. Fast settling particles may require up to 60°.
- Sump feed \(h \) should be below the sump liquid surface to avoid air entrainment. Allowing the pump to draw air will drastically reduce the useful life of the hydraulic parts.
- Sump volume should be as small as possible. Slurry ‘Retention Time’ is the relevant parameter for determining the size of the sump. It ranges between 15 seconds and 2 minutes for slurries containing coarse particles and fine particles, respectively.
- Separate sumps are preferred for standby pump installations. This will avoid settling out in the standby pump when not in use.
- For slurry applications, ensure a steady, uniform feed to the pump, where practicable.
- Install the pump as close as possible to the sump.
- Keep the length of suction pipe and the number of bends in the pipework to the minimum practicable. Use reinforced flexi-pipes \((F) \) to connect to inlet and outlet.

NOTE: INLET PIPE SHOULD, HOWEVER, HAVE A STRAIGHT LENGTH \((L) \), AT LEAST, 4 TIMES ITS DIAMETER TO ENSURE FAVOURABLE FLOW CONDITIONS INTO THE PUMP. IF A VALVE \((S) \) IS FITTED ON THE INLET SIDE, IT MUST BE FULLY OPEN WHEN THE PUMP IS RUNNING AND SHOULD HAVE A STRAIGHT FLOW PATH OF THE SAME AREA AS THE CONNECTED PIPE. SUCTION PIPES WHICH ARE LONGER THAN 10 TIMES THE DIAMETER SHOULD BE AVOIDED.

- Sump level \((H) \) should be 6 times pump inlet diameter \((D) \) when measured from the centre line of pump.
- The diameter of the inlet pipe should be the same as, or larger than, the pump inlet diameter.

\[
15 \text{s} < \frac{V}{Q} < 2 \text{min} \\
(4 \times D) < L < (10 \times D)
\]
• A drain valve should be incorporated in the inlet pipe. A floor channel should also be provided directly beneath it for recovering the waste slurry.
• Secure the pump inlet and outlet pipes separately to avoid unnecessary transmission of vibrations, forces or moments to the pump.
• Use expansion joints for high-pressure applications.

6.6 Shaft gland
See Care and Maintenance, Section 9, for specific installation instructions.

6.7 Motor and drive
See Care and Maintenance, Section 9, for specific installation instructions.
7 COMMISSIONING

WARNING

BEFORE CARRYING OUT THE FOLLOWING CHECKS, ISOLATE THE ELECTRICAL SUPPLY TO THE MOTOR.

1. If the pipework has not been connected to the pump on installation, ensure that the pump case and associated pipework are clear of any construction debris, slurry etc. before connection.

2. Ensure that the foundation and the securing bolts are tight.

3. Check that the rotating assembly is free to turn manually.

4. Check that the direction of rotation is correct -see General installation procedure, section 6.4.4.

CAUTION

THE PUMP MUST NOT BE RUN IN THE OPPOSITE DIRECTION AS THIS COULD RESULT IN THE IMPELLER UNWINDING FROM THE SHAFT, CAUSING EXTENSIVE DAMAGE TO THE PUMP.

5. Check lubrication.

NOTE: THE BEARINGS AND SEAL ASSEMBLIES ARE GREASE PACKED ON ASSEMBLY. SEE LUBRICATION, SUB-SECTION 9.4.

6. Ensure that the openings on each side of the bearing frame and the area around the gland are clear of debris, dried slurry, etc.

7. Check that all safety guards are secured in position.
8 OPERATING INSTRUCTIONS

8.1 Start-up

1. If the pump has just been maintained or has not been put into operation for some time, then carry out the pre-start checks as described in Commissioning, section 7.
2. Open the pump inlet and outlet valves.
3. Check for leakage from the inlet and outlet connections.

NOTE: AN INLET-SIDE LEAK MAY CAUSE THE PUMP TO DRAW AIR DURING OPERATION, THUS DRASTICALLY REDUCING ITS PUMPING CAPACITY.

4. If a water flushed gland is fitted, ensure that the water supply is turned on, and water is available at the correct pressure and flow rate.
5. If a mechanical seal is fitted, see section 9.5.3 before start up.
6. If auxiliary priming equipment is fitted, start the priming pump.
7. Start the pump drive motor.

8.2 Shutting down

The appropriate shutdown procedure for any installation depends on the slurry being pumped, and more generally on the process requirements upstream and downstream of the pump. What follows, therefore, may only be regarded as general guidelines for ensuring some degree of protection for the pump without reference to the particular application.

- Where practicable, switch the pump to clean water and allow the pipeline to be flushed through before shutting down.
- In case of systems with substantial discharge pipework and/or head of slurry, means of isolating the pump or draining the system should be provided — see section 6.5.

CAUTION

STOPPING THE PUMP WHEN THERE IS A HEAD OF SLURRY IN THE DISCHARGE PIPE SHOULD BE AVOIDED AS THIS COULD RESULT IN DAMAGE TO THE GLAND AND/OR PUMP.

- Having shut down the pump on clean water, close its isolating valves and then drain the pump and its pipework, if required.

CAUTION

ALWAYS CLOSE THE OUTLET VALVE FIRST. NEVER CLOSE THE INLET VALVE WHILE THE PUMP IS RUNNING.

NOTE: REVERSE FLOW, IN ADDITION TO POISING A RISK OF DAMAGE TO THE SHAFT SEAL, CAN ALSO CAUSE THE IMPELLER TO SPIN IN THE REVERSE DIRECTION. STARTING THE PUMP UNDER THESE CONDITIONS MIGHT CAUSE DAMAGE TO A MECHANICAL SEAL, IF FITTED, AND/OR CAN IN EXTREME CASES CAUSE THE SHAFT TO SHEAR. AN OVERRIDE CIRCUIT IS RECOMMENDED TO PREVENT THE PUMP BEING STARTED INADVERTENTLY WHILE THE IMPELLER IS ROTATING.
• For short stoppage periods **ONLY** and where there is **NO** risk of the slurry settling out, or solidifying in the system:

 - Pumps with expeller seal - immediately after shutting down, close the isolation valves and then drain the pump and the sump, if necessary.
 - Pumps with water flushed gland or mechanical seal leave the flush water ‘**ON**’ when shutting down the pump, then close the isolation valves and finally drain the pump and the sump, if necessary.

Where there is a risk of slurry settling out, or solidifying, refer to the plant operation manual for the appropriate shutdown procedure.

CAUTIONS

FORMATION OF ICE CAN BLOCK OR BURST THE PIPEWORK AND THE PUMP CASE. IN BELOW FREEZING CONDITIONS, ENSURE THAT THE PUMP CASE, AND PUMP INLET AND OUTLET PIPEWORK IS DRAINED OF ALL SLURRY FOR ANY LENGTHY SHUT-DOWN.

8.3 Running checks

During pump operation, the following checks should be made:

1. Check for leakage from the inlet and outlet connections, and from the gland seal.

 NOTE: AN UNTIGHT INLET FLANGE MAY NOT BE EASILY NOTICEABLE DURING OPERATION, AS THE PUMP COULD BE DRAWING AIR. CHECK FOR INLET-SIDE LEAKS BEFORE START-UP.

2. Check for excessive noise and vibration -see Description, section 2.

3. Check bearing temperature and lubrication –see Lubrication, sub-section 9.4.

4. Periodically verify that the shaft seal is correctly adjusted. If a water flush gland seal is fitted, ensure that the water supply is at the correct pressure and flow rate. (Refer to section 9.5.3 for shaft seal setting details.)

5. Check that the pump performance is satisfactory. (See Capacity Curves, section 2.7)

 NOTE: IF THE RUNNING CHECKS ARE UNSATISFACTORY, PUMP ADJUSTMENT OR MAINTENANCE MAY BE REQUIRED.

 IMPORTANT NOTE: AFTER THE FIRST 100 HOURS OF OPERATION, CHECK AND ADJUST THE IMPELLER AXIAL CLEARANCE. SEE SECTION 9.5.1.
9 CARE AND MAINTENANCE

9.1 Safety measures

WARNINGS
ISOLATE THE PUMP FROM ALL SOURCES OF ELECTRICITY AND POWER, BEFORE COMMENCING ANY MAINTENANCE WORK.

ALWAYS ASCERTAIN THE NATURE OF THE PROCESS LIQUID BEFORE COMMENCING WORK ON A PUMP AND FOLLOW THE HEALTH AND SAFETY PROCEDURES RELEVANT TO THE PROCESS LIQUID. IT MAY BE HARMFUL TO HEALTH.

Should the process liquid be of a harmful or hazardous nature take the following precautions as a minimum;
1. always use protective goggles and rubber gloves;
2. flush the pump thoroughly with clean water, before opening the pump;
3. after removing the components, flush them thoroughly with clean water.
4. follow the health and safety instructions provided in section 3.

9.2 Preventive maintenance & service schedule

9.2.1 Routine maintenance

Use the maintenance schedule below as a basis from which to produce a schedule suitable to each pumping application after experience in operation has been gained.

WARNING
BEFORE CARRYING OUT ANY MAINTENANCE ENSURE THAT ALL ELECTRICAL SUPPLIES TO THE MOTOR AND ASSOCIATED EQUIPMENT ARE SWITCHED OFF AND ISOLATED. LOCK IN THE OFF POSITION OR ATTACH SUITABLE WARNING PLATES TO THE RELEVANT SWITCHES.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ACTION</th>
<th>RUNNING HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Case, Bearing Cylinder Housing and Gland Area Pipework</td>
<td>Keep all areas clean and free from debris, slurry etc.</td>
<td>×</td>
</tr>
<tr>
<td>Hydraulic cylinders (where applicable)</td>
<td>Check for oil leaks. Rectify, as required.</td>
<td></td>
</tr>
<tr>
<td>Inlet/Outlet Connections</td>
<td>Check for security and leaks. Rectify as required.</td>
<td></td>
</tr>
<tr>
<td>Gland Seal - General</td>
<td>Check for leaks. Tighten gland follower screws or renew seal as necessary.</td>
<td></td>
</tr>
<tr>
<td>ITEM</td>
<td>ACTION</td>
<td>RUNNING HOURS</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Water flushing gland seal.</td>
<td>Check stuffing box connection for leaks. Rectify as necessary.</td>
<td>X</td>
</tr>
<tr>
<td>Centrifugal Gland Seal</td>
<td>Tighten gland follower screws or renew seal as necessary.</td>
<td>X</td>
</tr>
<tr>
<td>Bearing Cylinder</td>
<td>Lubricate bearings. See section 9.4.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Check Bearings for overheating.</td>
<td></td>
</tr>
<tr>
<td>All fixings</td>
<td>Ensure attachments are secure. Tighten to correct torque as necessary.</td>
<td>X</td>
</tr>
<tr>
<td>Adjusting Screw Locknut (P38)</td>
<td>See Torque Table, Section 11.1.</td>
<td>X</td>
</tr>
<tr>
<td>Pump/Drive unit installation</td>
<td>Inspect Drive Belts, if fitted, for deterioration and damage. Replace as necessary. Check drive belt tension and adjust as necessary.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Check drive couplings, if fitted, for security of connection.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Check safety covers for security of attachment - important</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Check drive motor holding down bolts for security of attachment.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Keep drive motor clean and free from debris, slurry etc.</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Service Drive Motor as necessary.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>In accordance with manufacturer’s instructions.</td>
<td></td>
</tr>
<tr>
<td>Pump impeller</td>
<td>Check axial clearance after run-in period. Adjust clearance by shimmming. Refer to Setting Pump Clearances, sub-section 9.5.1.</td>
<td>After first 100 running hours and repeat at intervals equal to 25% of the anticipated life of the pump.</td>
</tr>
</tbody>
</table>
9.2.2 Maintenance recommendations

Metso Minerals recommends that the following actions are carried out prior to any maintenance:

- clean down the pump, removing any accumulation of debris and/or slurry;
- ensure that inlet and outlet pipeline valves, if fitted, are closed;

WARNING

BEFORE OPENING UP THE PUMP, MAKE SURE THAT ANY LIQUID PRESSURE HAS BEEN RELEASED.

- on breaking a joint face, keep the gasket and ensure it is replaced on assembly;
- if using lifting gear to remove components, ensure that it is of adequate capacity and that test certificates are valid;
- on larger size pumps it is recommended that special tools are used to help assembly or maintenance.

For information regarding special tools please refer to Special Tools, section 9.3.
9.3 Tools and special equipment for service and maintenance

NOTE: THE FOLLOWING SPECIAL TOOLS ARE AVAILABLE FOR PUMPS WITH EITHER SINGLE, OR DOUBLE, ADJUSTMENT FRAMES.

1. A special crank-handle to fit over the drive-shaft end diameter and locate the drive key is advantageous when fitting the impeller to the shaft. See Dismantling and Fitting the Hydraulic Parts, section 9.5.2.

Figure 9.3-1 Special crank handle
2. Two proprietary packing extractors to facilitate the removal of the packing will also be advantageous.

![Figure 9.3-2 Packing extractor](image)

3. Back-liners for large pumps are very heavy. Specially designed back-liner lifting tools allow safe handling of the components.

![Figure 9.3-3 Back-liner lifting tool for metal pumps](image)
4. Shaft seals for large pumps are also quite heavy. A special shaft extension (E) facilitates removal and refitting of the seal assembly. The tool is also useful for removing the bearing assembly.

![Figure 9.3-4 Shaft extension tool](image)

5. A soft sling (strop) of appropriate lifting capacity (See Approximate Weights Table, section 11.3) to lift the case assembly is required.

CAUTION

TO PREVENT DAMAGE, ONLY USE A SOFT SLING (STROP) TO LIFT THE CASE.

All of the above special tools can be obtained from Metso Minerals. See section 10.6.
9.4 Lubrication

9.4.1 First-fill and re-packing after major servicing
Metso Minerals Slurry pumps are lubricated with SKF LGMT3 before dispatch. When renewing or re-fitting the bearings, they must again be re-packed with grease of the same specification as detailed in Table 9.4.1-1. The required quantity for each bearing is specified in Table 9.4.1-2.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickening agent :</td>
<td>Lithium soap</td>
</tr>
<tr>
<td>Base oil viscosity at 40 °C :</td>
<td>120 cST</td>
</tr>
<tr>
<td>Base oil type :</td>
<td>Mineral oil</td>
</tr>
<tr>
<td>Consistency NLGI :</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 9.4.1-1 Grease specification

<table>
<thead>
<tr>
<th>Frame size</th>
<th>Grease quantity (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR250</td>
<td>75</td>
</tr>
<tr>
<td>FR300</td>
<td>100</td>
</tr>
<tr>
<td>FR400</td>
<td>125</td>
</tr>
<tr>
<td>FR500</td>
<td>325</td>
</tr>
<tr>
<td>FR600</td>
<td>500</td>
</tr>
<tr>
<td>FR750</td>
<td>625</td>
</tr>
</tbody>
</table>

Table 9.4.1-2 Bearing lubrication - First fill & re-packing
9.4.2 Lubrication interval

The bearings may be re-greased with any lithium-based grease that conforms to the specification detailed in Table 9.4.1-1.

The lubrication interval depends upon the shaft speed and the bearing operating temperature, as shown in Table 9.4.2-1.

<table>
<thead>
<tr>
<th>Frame Size</th>
<th>Grease (g)</th>
<th>Pump speed (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>500</td>
<td>800</td>
</tr>
<tr>
<td>FR250</td>
<td>20</td>
<td>2275</td>
</tr>
<tr>
<td>FR300</td>
<td>25</td>
<td>1600</td>
</tr>
<tr>
<td>FR400</td>
<td>35</td>
<td>1250</td>
</tr>
<tr>
<td>FR500</td>
<td>50</td>
<td>1250</td>
</tr>
<tr>
<td>FR600</td>
<td>70</td>
<td>1250</td>
</tr>
<tr>
<td>FR750</td>
<td>90</td>
<td>900</td>
</tr>
</tbody>
</table>

Table 9.4.2-1 Recommended lubrication interval for bearings @ 70°C (hours)

The pump should initially be re-greased after 250 running hours or the recommended interval (whichever is less), unless stored for longer than 12 months before start-up, in which case the long-term storage instructions should be followed (See section 1.2).

Multiply above lubrication intervals by the factors given below if the normal bearing operating temperature (measured on the rim of the bearing end cover) differs from 70 °C.

<table>
<thead>
<tr>
<th>Temperature (°C)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplier</td>
<td>2.5</td>
<td>1.6</td>
<td>1.0</td>
<td>0.65</td>
<td>0.40</td>
<td>0.25</td>
<td>0.15</td>
<td>0.10</td>
</tr>
</tbody>
</table>

While the bearings and specified grease have a maximum operating temperature of 120°C, it is recommended that temperatures above 100 °C be avoided. However, transient temperatures between 100 °C and 120 °C are acceptable immediately following re-greasing.
9.4.3 Lubrication points
The pumps have two bearing lubrication points. See Figure 9.4.3-1.

<table>
<thead>
<tr>
<th>Part</th>
<th>Position</th>
<th>Qty.(cc)</th>
<th>Frequency</th>
<th>Lubricant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing cylinder</td>
<td>A</td>
<td>See Table 9.4.2-1.</td>
<td>See Table 9.4.2-1.</td>
<td>SKF LGMT3 or equivalent - see Table 9.4.1-1.</td>
</tr>
<tr>
<td>Motor and/or gearbox (where applicable)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>See manufacturer’s instruction manual.</td>
</tr>
</tbody>
</table>

Figure 9.4.3-1 Lubrication point diagram- Bearing greasing points (A)
9.5 Dismantling and assembly

9.5.1 Setting pump clearances

- **Impeller clearance adjustment (Standard Slurry Impeller)**
 These adjustments enable the back (frame side) and front (inlet side) running clearances to be kept to a minimum so that maximum operating efficiency is maintained throughout the wear life of the pump. The back impeller clearance is adjusted using the adjusting screw and the front clearance by adding or removing case shims.

When no further adjustment is possible, the pump must be disassembled and inspected and worn parts renewed.

1. Isolate the drive motor and attach suitable warning plates to the relevant switches. It is advisable to remove the fuses and/or lock the isolator open to avoid accidental starting.

2. Remove the drive safety guard and disconnect the belt drive or direct coupling as applicable.

3. Where fitted, a mechanical seal requires **setting** for disassembly. Section 9.5.3 would provide the relevant instructions, where applicable.

4. **Back (Frame Side) Clearance**
 This clearance, which should be adjusted first, is achieved by moving the complete rotating assembly towards the drive end:

 a) Pull off cover (P24) from the bearing frame and slacken housing clamp screws (P16) - 2 off, tension screws (P23) - 2 off, and adjusting screw locknut (P38).

 b) While rotating shaft (B11) by hand, take up the back clearance by turning adjustment screw (P19) against retaining plate (P22) until impeller (W3) is just touching back liner (W4).

 c) Back off the adjusting screw through the saddle until the end of the screw touches bearing frame (P14).

 d) Rotate the adjusting screw one turn. Check that impeller (W3) clears back liner (W4).

 e) Tighten tension screws (P23), housing clamp screws (P16) and adjusting screw locknut (P38).

 NOTE: TENSION AND CLAMP SCREWS MUST BE TORQUE TIGHTENED TO THE TORQUE VALUES LISTED IN TORQUE SETTING TABLES, SECTION 11.1.

Having completed the back clearance, the front clearance should be adjusted as follows:

5. **Front (Inlet Side) Clearance**

 NOTE: THE COMPLETE BEARING FRAME AND ROTATING ASSEMBLIES ARE MOVED TOWARDS THE CASE WHEN SETTING THIS CLEARANCE.

 a) Slacken bearing frame screws (P11) and nuts (P1) on case bolts (P4).

 b) Insert a jack screw (P10) in each side of the frame flange and turn the screws evenly to withdraw the bearing frame by approximately 4mm.
c) Unscrew the jack screws completely.
d) Remove the case shim sets (P3).
e) Reduce the gap between the bearing frame flanges and base/case support (P13) by evenly tightening two diametrically opposite case nuts (P1) and bolts (P4) until impeller (W3) touches case (W1).
f) Measure the gap between the bearing frame and the base/case support. Assemble case shims to a thickness just greater than the gap measured.
g) Slacken off the two case bolts. Retract the bearing frame slightly and fit the shims.
h) Tighten case nuts (P1) and bolts (P4) evenly to the required torque loading. Check that the impeller rotates freely. Add shims as necessary if the impeller fouls the case after tightening.

```
NOTE: IMPELLER SHOULD BE AS CLOSE TO THE CASE AS POSSIBLE WITHOUT FOULING IT.
```
i) Tighten bearing frame screws (P11) to the required torque.

6. If fitted, reset the mechanical seal.
7. Re-connect the drive belt or half coupling as applicable making sure that the drive is aligned correctly. Adjust as necessary to obtain the correct alignment.
8. Fit all safety guards.
9.5.2 Hydraulic parts and frame - dismantling and fitting

(i) Opening and closing the pump – fixed base

WARNING

MAKE SURE THAT ALL SLINGS, SHACKLES, ETC. ARE OF ADEQUATE LOAD CARRYING CAPACITY. APPROXIMATE WEIGHTS OF MAJOR COMPONENTS ARE PROVIDED IN SUB-SECTION 11.3. LIFTING POINTS INCORPORATED IN INDIVIDUAL COMPONENTS ARE INTENDED SOLELY FOR LIFTING THAT SPECIFIC COMPONENT. NEVER USE THESE FOR LIFTING ASSEMBLIES OF COMPONENTS.

1. General

The base (L) supports the case, the bearing and the rotating assemblies. See Figure 9.5.2-1. Bosses (D) cast in the frame are used to mount the drive motor overhead, if required.

Slots in the base vertical plate provide locations for case fixings (B). The top and bottom dead centre holes in the vertical plate are for the case clamp fixings (C). This method of attachment allows the case to be installed with the outlet in a number of positions - see ‘General Arrangement’, section 2.6.

![Bareshaft pump (typical)](image-url)
Shims (P) between the case and bearing frame are used to adjust the front running clearance between the impeller and the case. For ease of assembly, case fixings (B) locate in slots around the frame’s front flange. The inner flange of the frame provides a spigot for an expeller ring or a stuffing box. Threaded holes are provided in the flange for withdrawal screws (E).

Openings (F) in each side of the body give access to the gland and water flushing connection if fitted. Lubrication points are provided for the bearings. Other openings in the top (G) or side of the frame body give access to the bearing cylinder tension screws, saddle screws and impeller adjustment screw.

2. Inspection of wearing parts
Inspection of wearing parts can be carried out by either removing the case or by removing the bearing frame assembly, i.e. front or back pull-out method. The method will depend on the installation and ease of access to the pump.

The "back pull-out" method simplifies inspection and site maintenance. Alternatively, the pumping parts can be removed from the front after removing the pipework.

3. Preparing for disassembly
Figure 9.5.2-1 and parts list drawings in section 10.4 identify parts referenced in this section.
 a) Run the pump on clean water or flush clean the inside of the case.
 b) Isolate the pipework and drain the pump case.
c) Isolate the drive motor and attach suitable warning plates to the relevant switches. It is advisable to remove the fuses and/or lock the isolator open to prevent accidental starting.

d) Where fitted, a mechanical seal requires setting for disassembly and section 9.5.3 would provide the relevant instructions.

e) Disconnect the flush water tapping, if fitted.

4. Opening the pump – Back Pull-Out Method

a) Remove the drive guard and disconnect the belt drive or direct coupling as applicable.

b) Remove the bearing frame screws (P11) and washers (P12).

c) Remove case fixings (B). Keep them safe for reassembly. (Leave case clamping fixings (C) in position to support the case.)

d) Use jacking screws (P10) to ease apart the case and the rotating assembly by about 6 mm.

e) Remove case shims (P3) and jacking screws (P10).

f) Attach a suitable sling through the bearing frame. Take the weight of the frame assembly and withdraw it from the case, complete with back liner and impeller.

5. Opening the pump – Front Pull-Out Method

a) Disconnect the inlet and outlet pipework from the pump.

b) Note the position of the outlet to ensure correct reassembly.

c) Support the case in slings —cases for large pumps incorporate lugs (H) for attaching lifting shackles.

d) Remove case fixings (B & C). Keep them safe for reassembly.

e) Use jacking screws (P10) to ease apart the case and the rotating assembly.

f) Withdraw the case over back-liner (W4) and impeller (W3) and lower it onto a suitable support.

g) Remove jacking screws (P10).
6. Closing the pump

a) If the Front Pull-Out Method was used:
 i/ Lift and push the case over impeller (W3), onto back-liner (W4) and against the vertical plate. Ensure that case fixings (B) enter their respective holes around the flange joint.
 ii/ Locate and secure the case to the vertical plate by fitting the upper and lower casing clamp fixings (C) in the case slots provided.

b) If the Back Pull-Out Method was used:
 i/ Lift and offer the complete bearing frame and rotating assembly onto the base/case-support and push the impeller and back liner into the case with approximately a 30mm gap between the bearing frame flange and the vertical plate.
 ii/ Insert bearing frame screws (P11) and washers (P12). Do not tighten at this stage.

c) Set the impeller front clearance –see section 9.5.1.

d) Check the impeller for freedom of rotation.

NOTE: AFTER FINAL ADJUSTMENT, THE BACK-LINER WILL NORMALLY PROTRUDE SLIGHTLY INTO THE CASE –EXCEPT FOR HM50 AND HM75 WHEN FITTED WITH INDUCED FLOW IMPELLERS WHICH USE A FLAT BACK-LINER.

e) Tighten all fixings (B & C) to the torque values given in sub-section 11.1.

f) If the Front Pull-Out Method was used:
 Check inlet and outlet gaskets and re-connect the respective pipework.

CAUTION

REFER TO SECTION 6.5 BEFORE RENEWING PIPE FLANGES.

g) If the Back Pull-Out Method was used:
 i/ Tighten the bearing frame screws.
 ii/ If fitted, reset the mechanical seal for operation.
 iii/ If fitted, reconnect the flush water tapping.
 iv/ Fit the drive belts or connect the drive coupling, ensuring that they are in correct alignment.
 v/ Fit and secure the drive safety guard and the gland guard in position.
 vi/ Check that all fixings are secure.
 vii/ Remove warning plates and safety locks from power switches and restore power supply to the motor.
9.5.2 Hydraulic parts and frame - dismantling and fitting

(ii) Wet-end - disassembly and reassembly

1. General
Case (W1), impeller (W3) and back-liner (W4) are high quality, high-chrome iron castings. Larger size pump cases are ribbed and incorporate a number of lifting lugs. The inlet and outlet branches are fitted with joint seals (F2, F4) and split flanges (F1, F3) to provide a leak-proof and secure pipework connection.

The back-liner, which forms the rear face of the case, is attached to bearing frame (P14) by tee bolts (W19) and hexagon-headed nuts (W20). For ease of assembly, the bolts are retained in the slots by means of a rubber strap (W18). O-rings (W6) are used to seal the back liner and the case.

The wide choice of impellers available permit the most efficient case-impeller combination to be adopted for each application.

2. Removing impeller (W3) and back-liner (W4)

a) If an impeller release mechanism is fitted refer to section 9.5.2 (iii); otherwise, insert a suitable bar between two impeller vanes and lock the bar against a suitable static object. Apply a shock load by turning shaft (B11) in a direction opposite to the pump rotation. Alternatively, lock the shaft and shock the impeller. Sub-section 2.1.2 identifies the direction of rotation of the pump during operation.

b) Steady and suitably support impeller (W3) as it moves off shaft (B11).

Figure 9.5.2-A Removing impeller (W3)

Figure 9.5.2-B Do not apply heat in order to remove the impeller
c) Remove nuts (W20) from the four back liner bolts (W19) and withdraw back liner (W4). The bolts are retained in position by a rubber strap.

WARNING

BACK-LINERS ON LARGE PUMPS ARE EXTREMELY HEAVY. USE THE BACK-LINER LIFTING TOOL RECOMMENDED IN SECTION 9.3.

3. Inspection

a) Clean and inspect case (W1), impeller (W3) and back-liner (W4) for severe scoring, extensive wear, pitting, corrosion and damage. Renew if necessary.
b) Inspect back-liner seal (W6). Renew it, if it shows any signs of damage.
c) Refer to sections 9.5.3 and 9.5.4 for Shaft Seal and Bearing Maintenance.

4. Assembly

a) Ensure that the impeller release mechanism, where applicable, and the shaft seal components are in position. See parts list drawings in section 10 for details.
b) Fit back-liner seal (W6) into the groove around back-liner (W4). Grease the seal to aid assembly.
c) Locate back-liner bolts (W19) into the lugs around back-liner (W4) and retain in position with back-liner bolt retaining strap (W18).
d) Offer back-liner (W4) to the frame, engaging back liner bolts (W19) in the frame holes.

c) Where applicable, use the back-liner lifting tool recommended in section 9.3.

WARNING

WHERE APPLICABLE, USE THE BACK-LINER LIFTING TOOL RECOMMENDED IN SECTION 9.3.

e) Fit and tighten nuts (W20) to the correct torque (refer to sub-section 11.1).

NOTE: WHEN FITTING NEW PARTS TO PUMPS FITTED WITH EXPELLER TYPE SHAFT SEALS, IT MAY BE NECESSARY TO ADJUST THE BEARING ASSEMBLY AXIALLY USING THE ADJUSTING SCREW TO PREVENT THE EXPELLER FOULING THE BACK LINER.

f) Clean the thread on the shaft and grease with appropriate lubricant or anti-seize compound.
g) Fit impeller gasket (W17).
h) Lift impeller as shown in Figure 9.5.2-A and mount it onto the shaft end.
i) Block impeller (W3) using a bar inserted in between two of its vanes, then turn the shaft with the special crank-handle until the impeller is locked tight – refer to sub-section 9.3.
j) Set the impeller back clearance, where applicable – see section 9.5.1.
k) Apply grease liberally around back-liner seal (W6) to assist entry into case (W1).
9.5.2 Hydraulic parts and frame - dismantling and fitting

(iii) Impeller Release Mechanism (IRM) – type-1

An IRM (a) is fitted behind the shaft sleeve (b) to ease removal of the impeller during maintenance and repair. Removing this mechanism releases the tightening torque on the impeller. See Figure 9.5.2-i.

Figure 9.5.2-i Using impeller release mechanism (typical) eases impeller removal
Refer to Figure 9.5.2-ii:

To dismantle IRM (B25), loosen its clamping bolt. This should make it spring open.

To assemble IRM (B25):
1. apply an anti-seize compound to the IRM assembly screw threads;
2. ensure that the IRM clamping bolt is tightened up, and that IRM (B25) and impeller spacer (B54) fit together correctly -i.e. as cone and cup.

Figure 9.5.2-ii Impeller Release Mechanism, removal
9.5.2 Hydraulic parts and frame - dismantling and fitting

(iv) Hydraulic system

Not applicable
9.5.3 Shaft seal - dismantling and fitting

- Centrifugal Seal (High-Chrome Expeller Ring)

The centrifugal seal is used in pumping installations where water flushed glands are not acceptable.

A vaned expeller (G15) mounted on the shaft between the impeller and shaft sleeve (G2) generates a head that, working in conjunction with the back vanes of impeller (W3), keeps the liquid away from packing (G5). During normal operation there is no leakage at the gland. The packing is only used to retain the liquid when the pump is stationary.

This gland arrangement consists of three split packing rings (G5) and a lantern ring (G1) fitted into the annulus formed by shaft sleeve (G2) and expeller ring (G7). A gland follower (G10), with screws equally spaced around its flange and screwed into expeller ring (G7), retains the gland and allows for adjustment to the packing. A grease nipple (G21) is provided to lubricate the packing.

Expeller ring (G7) locates in bearing frame (P14) inner flange and is retained in position by back liner (W4). Differential impellers of reduced diameter may be used in some installations to give an improved gland seal where the expeller operation would otherwise be marginal.

1. Running Checks

During pump operation there should be no leakage from the gland. If leakage occurs this could indicate a number of problems:

- Worn Pump Components : Strip and inspect the impeller, expeller and expeller ring. Renew as necessary.
- Incorrect System Operation : Check for closed inlet or outlet valves or blocked pipelines.
- Incorrect Pump Speed : Check for belt slip or for incorrect setting of a variable speed drive.

2. Stopping

CAUTION

AVOID STOPPING THE PUMP WHEN THERE IS A HEAD OF SLURRY IN THE OUTLET PIPE. THIS COULD RESULT IN DAMAGE TO THE GLAND OR PUMP. ISOLATE THE PUMP BY A SUITABLE VALVE ARRANGEMENT OR SHUT DOWN THE PUMP AFTER PUMPING CLEAN WATER.

- a) Adjust the system so that the pump is pumping clean water, or isolate the pump.
- b) Stop the pump.
- c) Inspect the gland for excessive leakage.
d) If the centrifugal seal leaks when the pump is stationary, tighten gland follower (G10) by means of the gland follower screws (G18).

CAUTION

DO NOT OVER-TIGHTEN THE SCREWS AS THIS WILL CAUSE SEVERE WEAR OF THE SHAFT SLEEVE.

3. Routine Adjustments
Apart from the running checks specified above the only routine adjustments required are:

a) To check the gland for leakage on stopping the pump and to adjust as necessary.

b) When full adjustment of the gland follower has been taken up, packing rings (G5) should be renewed.

c) Periodically lubricate the gland through grease nipple (G21).

NOTE: THE AMOUNT OF GREASE INJECTED SHOULD BE A QUARTER OF THE QUANTITY INJECTED INTO THE MAIN BEARINGS AND AT THE SAME PERIODICITY AS THE MAIN BEARINGS - SEE LUBRICATION, SECTION 9.4. THE PERIODICITY AND QUANTITY GIVEN HERE ARE A GUIDE AND SHOULD BE MODIFIED IN LIGHT OF OPERATIONAL EXPERIENCE.

4. Renewing Packing

a) Remove gland follower screws (G18).

b) Slide gland follower (G10) away from the gland and remove the first two packing rings (G5) with a packing extractor.

c) Charge the gland through grease nipple (G21).

d) Insert two packing extractors, one each into diametrically opposite holes in lantern ring (G1), and extract it.

e) Remove the last packing ring (G5).
f) Smear three new packing rings with grease and then insert into expeller ring (G7); one turn of packing (G5), lantern ring (G1), the last two packing rings, followed by gland follower (G10).

NOTE: MAKE SURE THAT THE PACKING JOINTS ARE STAGGERED BY APPROXIMATELY 180° TO PREVENT A LEAKAGE PATH FROM OCCURRING (SEE FIGURE 9.5.3-1). IF NECESSARY USE THE GLAND FOLLOWER TO PRESS EACH TURN OF PACKING INTO POSITION.

g) Grease the gland through grease nipple (G21).

h) After opening the inlet and outlet valves check the gland for leaks. If leakage is excessive tighten the gland follower evenly until leakage is acceptable.

CAUTION

DO NOT OVER-TIGHTEN THE SCREWS AS THIS WILL CAUSE SEVERE WEAR OF THE SHAFT SLEEVE.

5. Maintenance of the Centrifugal Seal (Removal)

a) Gain access to expeller ring (G7) and gland by opening up the pump using the Front or Back Pull-Out Method.

b) Remove expeller (G15).

c) Slide expeller ring (G7) complete with the gland seal assembly from the shaft.

WARNING

SHAFT SEALS FOR LARGE PUMPS ARE QUITE HEAVY. USE THE SPECIAL SHAFT EXTENSION TO FACILITATES THEIR REMOVAL AND REFITTING –SEE SUB-SECTION 9.3.

d) Remove shaft sleeve (G2) and gaskets (G58) if these items have not come away with the gland seal.

6. Maintenance of the Centrifugal Seal (Disassembly)

a) Remove gland follower screws (G18) and gland follower (G10).

b) Push out shaft sleeve (G2) if it is still in position.

c) Remove packing rings (G5) and lantern ring (G1).

7. Maintenance of the Centrifugal Seal (Inspection)

a) Inspect expeller ring (G7) and its seal (G17.1) for wear and/or damage.

b) Examine all gaskets for deterioration, wear and/or damage.

c) Check shaft sleeve (G2) for wear and/or damage.

d) Examine gland follower (G10) for distortion of the flange due to over-tightening of the screws.

e) Inspect the lantern ring for wear and/or damage.
8. Maintenance of the Centrifugal Seal (Assembly)

NOTE: ALL PACKING RINGS AND ANY SUSPECT COMPONENTS SHOULD BE RENEWED.

a) If expeller ring seal (G17.1) is to be renewed, remove the old seal and thoroughly degrease the groove in expeller ring (G7) using a suitable cleaning agent. Apply grease to the new seal and fit into the groove.

b) Assemble the gland with the expeller ring resting on a flat surface, rear face uppermost.

c) Position shaft sleeve (G2) vertically in the bore of expeller ring (G7).

d) Smear grease on packing rings (G5) and, in the order listed, fit the following parts over shaft sleeve (G2) into the bore of expeller ring (G7):
 - One turn of packing (G5)
 - Lantern ring (G1)
 - Two rings of packing (G5)
 - Gland follower (G10).

e) Fit gland follower screws (G18) and nip finger tight.

f) Using the wet-end sealing system drawing in section 10.4, identify and fit the appropriate gaskets and spacers onto the shaft in the order shown.

g) Offer up the expeller ring and gland assembly so that shaft sleeve (G2) abuts a gasket. Ensure that the expeller ring spigot locates in bearing frame (P14).

h) Fit the last shaft sleeve gasket (G58) followed by expeller (G15) onto shaft (B11).

9. Maintenance of the Centrifugal Seal (Re-fitting)

Re-fit the bearing frame and rotating assembly or the case as appropriate for the method of removal.

CAUTION

BEFORE OPERATION, CARRY OUT THE PRE-START CHECKS.
9.5.4 Shaft and bearing assembly - removal and fitting

The following instructions assume that the pump is installed complete with the drive unit and is connected to the suction and discharge pipework.

1. Removal
 a) Remove the drive safety guard and disconnect the drive belts or drive coupling as applicable.
 b) If necessary, remove the drive motor to provide sufficient space to withdraw the bearing frame assembly from the case.
 c) Remove the wet end assembly (refer to sections 9.5.2 & 9.5.3)
 d) Where applicable, remove impeller release mechanism from the shaft – see section 9.5.2 (iii).
 e) Remove the housing clamp (P29) and cover (P24).
 f) Slacken the tension screws (P23), adjusting screw (P19) and locknut (P38). Remove the adjusting screw and retaining plate (P22).
 g) Remove the saddle screws (P20) and lift out the saddle (P18).
 h) Remove the grease nipple (B13) from the end cover at the wet-end of the shaft.
 i) Ease the shaft assembly rearwards out of the bearing frame. When possible, especially on the larger pumps, fit a strop sling around the bearing housing to take the weight as it is withdrawn completely from the frame. Remove the tension block (P21) as the assembly is withdrawn.
 j) Place the shaft and bearing assembly on suitable supports, ideally wooden vee blocks.

2. Re-fitting
 a) Clean and degrease the bore of the bearing frame. Coat the machined surfaces with anti-seize compound.
 b) Using a suitable strop sling to lift the assembly, insert the shaft and bearing assembly, threaded end first, into the bore of the frame.
 c) Rotate the bearing cylinder housing in the frame so that the tapped holes for the saddle screws are uppermost. Fit the following parts into position:
 • Tension Block (P21)
 • Adjusting Screw (P19) into the saddle
 • Saddle (P18) (Do not fit screws at this stage)
 • Retaining Plate (P22)
 • Housing clamps (P29) and Housing clamp screws (P16) - tighten temporarily.
 d) Finally, position the bearing cylinder housing so that the saddle screws (P20) can be inserted and fully tightened to the correct torque. See section 11.1.
e) Fit the grease nipple (B13) to the end-cover at the wet-end of the shaft.
f) Where applicable, assemble impeller release mechanism to the shaft – see section 9.5.2 (iii).
g) Reassemble the gland.
h) Reassemble the remainder of the pump.
9.5.5 Shaft and bearings - disassembly and re-assembly

1. General
The bearing assembly consists of a steel shaft onto the end of which the impeller is screwed. The other end of the shaft is keyed to accept a coupling or belt drive arrangement.

Heavy-duty, tapered roller bearings are used in various configurations as illustrated schematically below:

A lipseal backed by a V-ring (S), seals the bearings against dirt and other foreign matter. Grease nipples (G) are fitted to allow periodic bearing lubrication. Grease is purged through the bearing to remove any contamination.

The bearing assembly is secured in the bearing frame by a housing clamp, saddle block, and adjusting screw. On larger size pumps, two housing clamps and two saddle blocks with adjusting screws are used to adjust the shaft assembly axially.

The central portion of the bearing housing is colour coded to allow the assembly type to be ascertained from the exterior. The band is visible, when the cover plate (P24) is taken off the bearing frame (P14). Table 9.5.5-1 explains the coding.
Table 9.5.5-1 Bearing assembly type colour coding

<table>
<thead>
<tr>
<th>UNIT TYPE</th>
<th>STATUS</th>
<th>COLOUR CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>New build</td>
<td>Mid Blue-18.E.53</td>
</tr>
<tr>
<td>Double dry-end</td>
<td>New build</td>
<td>Green</td>
</tr>
<tr>
<td>Double wet-end</td>
<td>New build</td>
<td>Yellow</td>
</tr>
<tr>
<td>Standard</td>
<td>Reconditioned</td>
<td>Red</td>
</tr>
<tr>
<td>Double dry-end</td>
<td>Reconditioned</td>
<td>Red with green band</td>
</tr>
<tr>
<td>Double wet-end</td>
<td>Reconditioned</td>
<td>Red with yellow band</td>
</tr>
</tbody>
</table>

2. Disassembly

 a) Remove the flinger (B1) from the wet-end of the bearing cylinder.
 b) Support the shaft and bearing assembly vertically on blocks on the end cover with the impeller thread downwards.
 c) Remove the following parts from the dry-end of the bearing cylinder housing (B14):
 - End Cover Screws (B5)
 - End Cover (B2.2)
 - Primary (B22.2) and secondary (B19.2) seals.

 NOTE: MAKE A NOTE OF THE NUMBER OF SHIMS FITTED, TO AID ASSEMBLY.

 d) Lift out the shaft and bearings.
 e) Tap or press off the bearings.

 NOTE: THREE-BEARING ASSEMBLIES HAVE AN INNER AND OUTER SPACER FITTED BETWEEN THE BEARINGS AT THE TWO-BEARING END.

 f) Lay the bearing cylinder housing horizontally on vee blocks.
 g) Remove the end cover and shims from the wet-end.
 h) Wash all parts in a suitable cleaning solvent and dry carefully.

3. Inspection

 a) Inspect the bearing housing internally for excessive wear in the area of the roller bearing outer races. Check that all threaded holes are clear and that the threads are undamaged.
 b) Check for damaged seals. Inspect end covers for damage and ensure that grease passages are clear.
c) Carefully inspect the roller bearings, cages and races for wear, damage and corrosion. After inspection, dip the bearings in gear oil and wrap them in a clean cloth or paper to protect them until installation.

d) Check the condition of the shims.

e) Examine the shaft for damage and corrosion. Remove any nicks and burrs with a carborundum stone.

f) Inspect the shaft sleeve and gaskets for deterioration, damage and wear. Renew any gaskets which are suspect.

g) Renew any defective components.

4. Assembly

a) Slide the bearing inner races and bearing cages onto shaft (B11). Ensure that the large outer diameter of the inner races are facing inwards on the shaft.

NOTE: ON ASSEMBLIES WITH TWO BEARINGS AT ONE END, THE ARRANGEMENT IS AS FOLLOWS: INNER RACE, INNER SPACER, OUTER RACE, OUTER SPACER, INNER RACE.

b) Press the bearing inner races onto the shaft so that they are tight against the inner shoulders of the shaft.

NOTE: THE BEARINGS MAY BE HEATED IN OIL OR IN A BEARING HEATER TO A MAXIMUM OF 121 °C FOR EASE OF ASSEMBLY.

c) Coat the shaft between the bearings with a suitable corrosion preventive solution.

CAUTION

DO NOT GREASE THE BEARING LANDS OF THE BEARING HOUSING. THESE LANDS SHOULD BE CLEANED WITH A PROPRIETARY DEGREASANT AND THOROUGHLY DRIED. ENSURE THAT THE LANDS ARE FREE FROM ALL DIRT, GRIT AND CONTAMINANTS BEFORE ASSEMBLING.

d) Push or tap a bearing outer race into the bearing cylinder housing (B14) at the end nearest the tapped saddle screw (P20) location holes (wet-end) and position it just below the end face of the housing. The smaller inner diameter must be outermost. See the assembly diagram for correct orientation if in doubt. Stand the housing on one end to assist assembly.

e) Fit grease nipples (B13) to end covers, if not already fitted. Purge greaseways with fresh grease using a grease gun and wipe excess grease away. Ensure that the end covers are kept clean.

f) Fit the secondary seal (B19.1) into the end-cover.

g) Place one thick end-cover shim over the spigot of end-cover (B2.1) and fit it to bearing cylinder housing (B14) using screws (B5) so as to push the outer bearing race into the housing. Position the end-cover so that the bearing
grease hole will be accessible when the bearing cylinder assembly is fitted to bearing frame (P14). Tighten the screws (B5) evenly and to the correct torque. See Torque Table, section 11.1.

h) Fit shaft (B11) into bearing cylinder housing (B14) with its threaded end protruding from the wet-end cover (B2.1). It is recommended that the housing is supported vertically in a secure stand to give sufficient clearance underneath the shaft –see Figure 9.5.5-1.

![Figure 9.5.5-1 Bearing cylinder housing support & bearing clearance: Shaft(A), Dial test indicator (B), Bearing cylinder housing (C), Support stand (D), Securing screws (E).](image)

i) Fit the bearing outer race into the bearing cylinder housing at the dry-end and press it into position using dry-end cover (B2.2) until the shaft becomes stiff to turn.

j) Assemble the pack of shims removed during disassembly.

k) Remove cover (B2.2), fit the shims over the cover’s spigot, then re-fit the cover to the housing.

l) Tighten screws (B5) evenly and to the correct torque.

IMPORTANT NOTE

STRIKE THE INDIVIDUAL ENDS OF THE SHAFT TO ENSURE THAT THE BEARING RACES ARE HARD UP AGAINST THE END COVER BEFORE CHECKING THE BEARING CLEARANCE.
Table 9.5.5-2 Bearing clearances

<table>
<thead>
<tr>
<th>FRAME SIZE</th>
<th>CLEARANCE (END-FLOAT), MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR250</td>
<td>0.075 to 0.125</td>
</tr>
<tr>
<td>FR300</td>
<td>0.075 to 0.125</td>
</tr>
<tr>
<td>FR400</td>
<td>0.100 to 0.150</td>
</tr>
<tr>
<td>FR500</td>
<td>0.100 to 0.150</td>
</tr>
<tr>
<td>FR600</td>
<td>0.150 to 0.200</td>
</tr>
<tr>
<td>FR750</td>
<td>0.180 to 0.250</td>
</tr>
</tbody>
</table>

m) Check the bearing clearance for the size of pump (See Table 9.5.5-2) using a dial test indicator on the shaft end.

NOTE:IDEALLY, THE INDICATOR SHOULD BE FITTED TO A MAGNETIC BASE LOCATED ON THE END-COVER. BY MOVING THE SHAFT BACKWARDS AND FORWARDS THE END CLEARANCE MAY BE READ ON THE INDICATOR (SEE FIGURE 9.5.5-1).

n) Remove or add shims as necessary to obtain the correct clearance.

NOTE:ROTATE THE SHAFT WHILE CHECKING THE CLEARANCE TO ENSURE CORRECT SEATING OF THE BEARING ROLLERS.

o) Having set the clearance, remove dry-end cover (B2.2) and its shim set.

p) Remove the dry-end bearing outer race and withdraw the shaft assembly.

q) Pack the required quantity of grease into both bearing cages -see Lubrication sub-section 9.4.

NOTE:WHEN HAND PACKING, FORCE GREASE THROUGH THE BEARING UNDER THE CAGE FROM THE LARGE TO THE SMALL END TO ENSURE THOROUGH DISTRIBUTION. ALWAYS USE THE CORRECT QUANTITY OF GREASE. OVER OR UNDER GREASING CAN BE DETRIMENTAL TO THE LIFE OF THE BEARING.

r) Re-fit shaft (B11) into bearing cylinder housing (B14).

s) Re-fit the dry-end bearing outer race into the housing.

t) Fit secondary seal (B19.2) into end cover (B2.2).

u) Fit the shims and refit end-cover (B2.2) to the housing, positioning the grease hole such that it will be accessible when the bearing cylinder assembly is fitted to bearing frame (P14).

v) Tighten screws (B5) evenly and to the correct torque.

w) With the bearing cylinder housing now supported horizontally, lubricate the parts with grease and slide the shaft spacer (B6) with the shaft spacer seal (B16) into position taking care not to damage the seal. Apply a light coating of grease to the backs of the secondary seals (B19.1) & (B19.2) and push the primary seals (B22.1) & (B22.2) into position making firm contact with the secondary seals.

x) Fit the flinger (B1).
9.5.6 Pump drive - removal and re-fitting

(NOT APPLICABLE)
9.6 Fault finding

9.6.1 General

Use the checklist provided to quickly establish the cause of any running problems. The checklist assumes that the equipment normally operates satisfactorily.

WARNING
WHERE POSSIBLE CHECKS MUST BE CARRIED OUT WITH THE POWER SUPPLY SECURELY ISOLATED.
WHERE POWER IS REQUIRED FOR CARRYING OUT THE CHECKS, TAKE EVERY PRECAUTION
PRESCRIBED IN ORDER TO AVOID INJURY TO PERSONNEL. ELECTRICAL WORK MUST ONLY BE
CARRIED OUT BY A FULLY QUALIFIED ELECTRICIAN.

A multimeter, a test lamp and appropriate circuit diagrams will be required to carry out checks on electrical equipment.

NOTE: IF ALL FAILS, CONTACT METSO MINERALS FOR FURTHER ADVICE.

9.6.2 Pump fails to start

Is power supply live ?

Yes

No⇒ Check that:

- mains switch is closed;
- starter and its fuses are intact;
- control voltage is available for starting;
- overload protection has been reset;
- all phases are live;
- power cable to motor is not damaged.

Can pump be started manually ?

Yes

No⇒ Is there a fault with:

- level control equipment ?
- other monitoring or control equipment ?

Consult monitoring equipment documentation and change any faulty equipment.

Is the shaft jammed ?

Yes⇒ Securely isolate the power supply.

No

- Remove the belt guard and try to rotate the pump shaft by hand.
- Dismantle the pump and clean behind the impeller. See section 9.5.2. Flush out the pump and the pump sump.
- Dismantle the drive and check that both the motor and pump shaft can be rotated. Fit new bearings if necessary. See section 9.5 and the motor manufacturer’s instructions.
9.6.3 The pump starts but the motor protection trips

Has flow path or pipe run been modified?

- No
- Yes

Is motor protection setting too low?

- No
- Yes

Is shaft jammed or hard to turn?

- No
- Yes

9.6.4 The pump is running but the flow rate is too low or nil

Has operating conditions or pipe run been modified?

- No
- Yes

Has leakage been detected in plant?

- No
- Yes

- Alter the flow path or pipe run, or adjust the rating of the drive motor and pump to suit new operating conditions.

- Check against the motor rating plate and adjust as necessary.

- Securely isolate the power supply.

- Remove the belt guard and try to rotate the pump shaft by hand.

- Dismantle the pump and clean behind the impeller. See section 9.5.2. Flush out the pump and the pump sump.

- Dismantle the drive and check that both the motor and pump shaft can be rotated. Fit new bearings if necessary. See section 9.5 and the motor manufacturer’s instructions.

- Check that pump clearances are correct. See section 9.5.1.

- Alter the operating conditions, the pipe run, or adjust the rating of the drive, motor and pump to suit new operating conditions.

- Renew or seal the leaking parts.
9.6.5 The pump runs unevenly or vibrates

Is the inlet flow uneven or is the pump drawing air?

Yes⇒

- Either adjust the feed to the pump, or adjust the rating of the drive, motor and pump to suit the operating conditions.

No

Are all valves open and are the pipes clear?

Yes⇒

- Remedy the fault.

No⇒

- Either adjust the feed to the pump, or adjust the rating of the drive, motor and pump to suit the operating conditions.

- Clean the impeller -see Dismantling and Assembly, section 9.5.

9.6.6 Abnormal leakage from the shaft gland

See Shaft Seal Removal and Fitting, section 9.5.3.
10 SPARE PARTS

10.1 Recommended stock of spares
To reduce the length of time a pump is out of service, it is advisable to always keep in stock a set of the recommended spare parts listed in this section. Please refer to the table below for part item number references.

<table>
<thead>
<tr>
<th>Item</th>
<th>Part Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case (complete volute)</td>
<td>W1</td>
</tr>
<tr>
<td>Impeller</td>
<td>W3</td>
</tr>
<tr>
<td>Back-liner</td>
<td>W4</td>
</tr>
<tr>
<td>Shaft sleeve</td>
<td>G2</td>
</tr>
<tr>
<td>Gland packing</td>
<td>G5</td>
</tr>
<tr>
<td>Expeller ring</td>
<td>G7</td>
</tr>
<tr>
<td>Expeller</td>
<td>G15</td>
</tr>
<tr>
<td>Bearing cylinder assembly</td>
<td>B99</td>
</tr>
<tr>
<td>Set of seals</td>
<td>B98</td>
</tr>
</tbody>
</table>

10.2 Storage of spares
See section 1.2.5.

10.3 Spares ordering procedure
To assist our Spares Department process your order quickly, customers are requested to provide the following information when ordering spares:

- Model and Size of pump
- Serial Number
- Build Number
- Approximate date of purchase
- Part Number and Description of Required Spare Parts

This information should then be forwarded to the local Metso Minerals branch for action - see sub-section 1.4.
10.4 Spare part drawing
FR250, FR300

FR400, FR500, FR600, FR750

(i)

(ii)

V
Slurry Pump

B16
B25
B34
B1
B11
B10
B19.2
B2.2
B5
B3
B14
B19.1
B2.1
B12
B19.2
B2.2
B5
G58

½"BSP
Wear parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Qty</th>
<th>Unit weight Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>W01</td>
<td>PDCH2176</td>
<td>Case</td>
<td>1</td>
<td>204.00</td>
</tr>
<tr>
<td>W03</td>
<td>PDCH2178</td>
<td>Impeller</td>
<td>1</td>
<td>55.00</td>
</tr>
<tr>
<td>W04</td>
<td>PD721041</td>
<td>Back liner</td>
<td>1</td>
<td>27.00</td>
</tr>
<tr>
<td>W06</td>
<td>SA983300</td>
<td>O-ring (incl. in w04)</td>
<td>1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Shaft seal

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Qty</th>
<th>Unit weight Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>G01</td>
<td>PD730063</td>
<td>Lantern ring</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>G02</td>
<td>PDCF2539</td>
<td>Shaft sleeve</td>
<td>1</td>
<td>1.90</td>
</tr>
<tr>
<td>G05</td>
<td>PD730011</td>
<td>Packing</td>
<td>1</td>
<td>0.20</td>
</tr>
<tr>
<td>G07</td>
<td>PDCH7107</td>
<td>Expeller ring</td>
<td>1</td>
<td>9.60</td>
</tr>
<tr>
<td>G10</td>
<td>PD730044</td>
<td>Gland follower</td>
<td>1</td>
<td>1.40</td>
</tr>
<tr>
<td>G15</td>
<td>PDCH1877</td>
<td>Expeller</td>
<td>1</td>
<td>7.00</td>
</tr>
<tr>
<td>G17.1</td>
<td>SA981232</td>
<td>O-ring (incl. in g07)</td>
<td>1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Gasket

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Qty</th>
<th>Unit weight Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>G58</td>
<td>PDCA565</td>
<td>Gasket</td>
<td>3</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Bearing assembly parts

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Qty</th>
<th>Unit weight Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>B01</td>
<td>PD730099</td>
<td>Flinger</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td>B02.1</td>
<td>PDCH1875</td>
<td>End cover</td>
<td>1</td>
<td>2.40</td>
</tr>
<tr>
<td>B02.2</td>
<td>PDCH3075</td>
<td>End cover</td>
<td>1</td>
<td>2.70</td>
</tr>
<tr>
<td>B03</td>
<td>PD730025</td>
<td>Shim set</td>
<td>1</td>
<td>2.58</td>
</tr>
<tr>
<td>B06</td>
<td>PDCB821</td>
<td>Shaft spacer</td>
<td>1</td>
<td>0.33</td>
</tr>
<tr>
<td>B08</td>
<td>Z0370438</td>
<td>Bearing</td>
<td>2</td>
<td>3.90</td>
</tr>
<tr>
<td>B10</td>
<td>SA899018-100</td>
<td>Key</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>B11</td>
<td>PDCH4270</td>
<td>Shaft</td>
<td>1</td>
<td>25.80</td>
</tr>
<tr>
<td>B14</td>
<td>PD730004</td>
<td>Bearing cylinder housing</td>
<td>1</td>
<td>28.50</td>
</tr>
<tr>
<td>B98</td>
<td>PDWB05-S1</td>
<td>Set of seals</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>B99</td>
<td>PDWB05102</td>
<td>Bearing/shaft assembly</td>
<td>1</td>
<td>76.00</td>
</tr>
</tbody>
</table>

Impeller release mechanism

<table>
<thead>
<tr>
<th>Item</th>
<th>Part No.</th>
<th>Description</th>
<th>Qty</th>
<th>Unit weight Kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>B25</td>
<td>PDCH6558</td>
<td>Impeller release mechanism</td>
<td>1</td>
<td>0.75</td>
</tr>
<tr>
<td>B54</td>
<td>PDCH6559</td>
<td>Impeller spacer</td>
<td>1</td>
<td>0.30</td>
</tr>
<tr>
<td>P03</td>
<td>PD730097-P22</td>
<td>Shim set</td>
<td>1</td>
<td>1.76</td>
</tr>
<tr>
<td>P04</td>
<td>PD770040</td>
<td>Case bolt</td>
<td>6</td>
<td>0.50</td>
</tr>
<tr>
<td>P08</td>
<td>PD730015</td>
<td>Casing nut</td>
<td>2</td>
<td>0.19</td>
</tr>
<tr>
<td>P18</td>
<td>PDCH3068</td>
<td>Saddle</td>
<td>1</td>
<td>0.80</td>
</tr>
<tr>
<td>P21</td>
<td>PD730053</td>
<td>Tension block</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>P22</td>
<td>PDCB279-3</td>
<td>Retaining plate</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>P39</td>
<td>PDCA43-3</td>
<td>Spacer</td>
<td>2</td>
<td>0.23</td>
</tr>
<tr>
<td>W17</td>
<td>PDCA564</td>
<td>Gasket</td>
<td>1</td>
<td>0.01</td>
</tr>
<tr>
<td>W18</td>
<td>SA980106</td>
<td>O-ring</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>W19</td>
<td>PD730040</td>
<td>Back liner bolt</td>
<td>4</td>
<td>0.12</td>
</tr>
</tbody>
</table>
10.6 Toolkit

10.6.1 Standard tools
In addition to the special tools detailed in sub-section 9.3 and Table 10.6-2, and installation tools and equipment detailed in sub-section 6.3, Table 10.6-1 lists a basic toolkit for performing normal maintenance operations on the pump. A dial test indicator may also be required to set bearing clearances – verify by reference to section 9.5.5. Additional tools may also be listed in the motor installation and maintenance documentation. Refer to Reference Publications, sub-section 11.2.

Table 10.6-1 Toolkit

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty.</th>
<th>Type</th>
<th>Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Spanner AF</td>
<td>MM100 MM150 MM200 MM250 MM300 MM350 MM400</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(mm)</td>
<td>19 22 24 30 36 36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Socket AF</td>
<td>MM100 MM150 MM200 MM250 MM300 MM350 MM400</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(mm)</td>
<td>17, 19, 24, 27, 30 17, 19, 24, 27, 30 22, 24, 30, 36 24, 30, 36 19, 30, 36, 46 24, 30, 36, 46, 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torque wrench (Nm range)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Adjustable spanner (mm)</td>
<td></td>
</tr>
</tbody>
</table>

10.6.2 Special tools

Table 10.6-2 Special tools

<table>
<thead>
<tr>
<th>Item</th>
<th>Size</th>
<th>Part No.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Crank</td>
<td>Packing extractor</td>
<td>Back-liner lifter</td>
<td>Shaft extension</td>
</tr>
<tr>
<td>1</td>
<td>MM100</td>
<td>SA500244-M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MM150</td>
<td>SA219594-M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>MM200</td>
<td>SA219595-M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>MM250</td>
<td>SA219596-M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MM300/MM350</td>
<td>SA219598-M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>MM400</td>
<td>SA219598-M1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>981865</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>981607</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11 APPENDICES

11.1 Torque table

The following table gives the recommended torque values for tightening bolts and screws.

NOTE: ALL TORQUE VALUE TOLERANCES ARE ±5%.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>MM100</th>
<th>MM150</th>
<th>MM200</th>
<th>MM250</th>
<th>MM300</th>
<th>MM350</th>
<th>MM400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case bolt (P4)</td>
<td>147</td>
<td>163</td>
<td>189</td>
<td>189</td>
<td>270</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Casing clamp screw(P9)</td>
<td>147</td>
<td>163</td>
<td>189</td>
<td>189</td>
<td>270</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>Bearing frame screw(P11)</td>
<td>163</td>
<td>163</td>
<td>177</td>
<td>189</td>
<td>338</td>
<td>338</td>
<td></td>
</tr>
<tr>
<td>Back-liner bolts(W19)</td>
<td>34</td>
<td>34</td>
<td>54</td>
<td>98</td>
<td>142</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>Housing clamp screws(P16)</td>
<td>34</td>
<td>40</td>
<td>54</td>
<td>67</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Tension screws(P23)</td>
<td>16 to 18</td>
<td>16 to 18</td>
<td>16 to 18</td>
<td>26 to 34</td>
<td>26 to 34</td>
<td>26 to 34</td>
<td></td>
</tr>
<tr>
<td>Saddle screws(P20)</td>
<td>34</td>
<td>40</td>
<td>54</td>
<td>54</td>
<td>108</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>End-cover screw(B5)</td>
<td>34</td>
<td>40</td>
<td>40</td>
<td>54</td>
<td>81</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Outlet flange half-clamp bolts NP16 (F3)</td>
<td>M8 (20)</td>
<td>M10 (40)</td>
<td>M12 (70)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
</tr>
<tr>
<td>Inlet flange half-clamp bolts NP16 (F1)</td>
<td>M8 (20)</td>
<td>M12 (70)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
<td>M16 (170)</td>
</tr>
</tbody>
</table>
11.2 Reference publications
11.3 Weights table

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Bare shaft pump</td>
<td>632</td>
</tr>
<tr>
<td>W1</td>
<td>Case</td>
<td>190</td>
</tr>
<tr>
<td>P14</td>
<td>Frame</td>
<td>152</td>
</tr>
<tr>
<td>W3</td>
<td>Impeller</td>
<td>55</td>
</tr>
<tr>
<td>B99</td>
<td>Bearing cylinder assembly</td>
<td>76</td>
</tr>
<tr>
<td>-</td>
<td>Back pull-out assembly</td>
<td>352</td>
</tr>
<tr>
<td>P13</td>
<td>Base</td>
<td>70</td>
</tr>
</tbody>
</table>